-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcut-adm.tex
369 lines (306 loc) · 16.4 KB
/
cut-adm.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
In this section, we go back to show that the $cut$ rule is admissible in $\LDL$ and prove Theorem \ref{thm:cut-adm}. For technical reasons, we prove a stronger version, which nevertheless results in what we have claimed.
Firs, we need to define rank.
\begin{dfn}
Rank of a formula $A$ is defined as
\[ \rho(A) = \begin{cases}
1 & \quad ; A \in P \cup \{ \bot, \top \} \\
\rho(B) & \quad ; A = \nabla B \\
max(\rho(B), \rho(C)) + 1 & \quad ; A = B \circ C \quad (\circ \in \{ \land, \lor, \rightarrow \})
\end{cases} \]
Notice that $\nabla$ does not increase the rank of a formula.
\end{dfn}
We will use multiple nested inductions in the proof of the theorem. The notion of rank for a formula will help us in using induction on the srtucture of the formula, up to $\nabla$.
\begin{thm}
If $\LDL \vdash \Gamma \Rightarrow A$ and $\LDL \vdash \Sigma, \nabla^n A \Rightarrow \Delta$, then $\LDL \vdash \nabla^n \Gamma, \Sigma \Rightarrow \Delta$.
\end{thm}
\begin{proof}
The proof is by simultaneous inductions on the height of proof-trees for $\Gamma \Rightarrow A$ and $\Sigma, \nabla^n A \Rightarrow \Delta$, which we call $\D_1$ and $\D_2$ respectively, and on the rank of $A$. We can partition all the cases into three parts:
\begin{enumerate}
\item The cases where $A$ is not principal in the last rule of $\D_1$. This part includes all the cases where $\D_1$ ends with either of $Id^p$, $L \bot$, $LW$, $Rw$, $L \wedge ^n$, $L \vee ^n$, $L \rightarrow ^n$, $L \supset ^n$, or $N$.
\item The cases where $A$ is principal in the last rule of $\D_1$, but $\nabla^n A$ not principal in last rule of $\D_2$.
\item The cases where $A$ is principal in the last rules of both $\D_1$ and $\nabla^n A$ is principal in the last rules of $\D_2$.
\end{enumerate}
In the first two parts, we will use the induction hypothesis for the subtree of $\D_1$ and $\D_2$, while in the last part, we will also use the induction hypothesis for the formulas with smaller rank than $A$, which are the subformulas of $A$ up to $\nabla$.
Part \1. The case where $\D_1$ ends with $Id^p$ is trivial and the case for $L \bot$ is infeasible. If $\D_1$ ends with $Rw$, we can prove the desired sequent using $LW$ and $Rw$ on the premise $\Gamma \Rightarrow$. In the remaining cases, $\D_1$ has at least one premise with $A$ on its succedent, except the case for $N$, where $A$ is on the succedent of the premise with one less $\nabla$. In any of these cases we can apply the induction hypothesis for that premise and $\D_2$ to remove $\nabla^n A$, and then apply the same last rule.
Notice that by the induction hypothesis, for any $n'$ and $\Gamma'$, and for any proof-tree like $\D'$ for $\Gamma' \Rightarrow A$, if $h(\D') < h(\D_1)$, there exists a proof-tree for $\nabla^{n'} \Gamma', \Sigma \Rightarrow \Delta$, which we will use in our proof-trees like a rule, denoted by $\IH$ on its right-side, and call it $\IH(\D')$.
Here we will only mention the cases for $L \wedge ^n$, $L \vee ^n$, $L \rightarrow ^n$ and $N$. Other cases are handled similarly. In each case we denote the subtrees for the possible premises of $\D_1$ by $\D_1'$ and $\D_1''$. Now, suppose that $\D_1$ ends with either of the following rules:
\noindent($L \wedge ^n$): Let $\D_1$ ends with $L \wedge ^n$. So we have
\begin{prooftree}
\noLine
\AXC{$\D_1'$}
\UIC{$\Gamma, \nabla^r B, \nabla^r C \Rightarrow A$}
\RightLabel{$L \wedge ^n$}
\UIC{$\Gamma, \nabla^r (B \wedge C) \Rightarrow A$}
\end{prooftree}
Then we have the desired sequent by applying $L \wedge ^n$ on $\IH(\D_1')$.
\begin{prooftree}
\noLine
\AXC{$\D_1'$}
\UIC{$\Gamma, \nabla^r B, \nabla^r C \Rightarrow A$}
\noLine
\AXC{$\D_2$}
\UIC{$\Sigma, \nabla^n A\Rightarrow \Delta$}
\RightLabel{IH}
\BIC{$\nabla^n \Gamma, \nabla^{n+r} B, \nabla^{n+r} C, \Sigma \Rightarrow \Delta$}
\RightLabel{$L \wedge ^n$}
\UIC{$\nabla^n \Gamma, \nabla^{n+r} (B \wedge C), \Sigma \Rightarrow \Delta$}
\end{prooftree}\quad\\
\noindent($L \vee ^n$): Let $\D_1$ ends with $L \vee ^n$, that is
\begin{prooftree}
\noLine
\AXC{$\D_1'$}
\UIC{$\Gamma, \nabla^r B \Rightarrow A$}
\noLine
\AXC{$\D_1''$}
\UIC{$\Gamma, \nabla^r C \Rightarrow A$}
\RightLabel{$L \vee ^n$}
\BIC{$\Gamma, \nabla^r (B \vee C) \Rightarrow A$}
\end{prooftree}
Then we have the desired sequent by applying $L \vee ^n$ again on $\IH(\D_1')$ and $\IH(\D_2')$.
\begin{prooftree}
\noLine
\AXC{$\D_1'$}
\UIC{$\Gamma, \nabla^r B \Rightarrow A$}
\noLine
\AXC{$\D_2$}
\UIC{$\Sigma, \nabla^n A \Rightarrow \Delta$}
\RightLabel{IH}
\BIC{$\nabla^n \Gamma, \nabla^{n+r} B, \Sigma \Rightarrow \Delta$}
\noLine
\AXC{$\D_1''$}
\UIC{$\Gamma, \nabla^r C \Rightarrow A$}
\noLine
\AXC{$\D_2$}
\UIC{$\Sigma, \nabla^n A \Rightarrow \Delta$}
\RightLabel{IH}
\BIC{$\nabla^n \Gamma, \nabla^{n+r} C, \Sigma \Rightarrow \Delta$}
\RightLabel{$L \vee ^n$}
\BIC{$\nabla^n \Gamma, \nabla^{n+r} (B \vee C), \Sigma \Rightarrow \Delta$}
\end{prooftree}\quad\\
\noindent($L \rightarrow ^n$): Suppose $\D_1$ ends with $L \rightarrow ^n$, that is
\begin{prooftree}
\noLine
\AXC{$\D_1'$}
\UIC{$\Gamma, \nabla^{r+1} (B \rightarrow C) \Rightarrow \nabla^r B$}
\noLine
\AXC{$\D_1''$}
\UIC{$\Gamma, \nabla^{r+1} (B \rightarrow C), \nabla^r C \Rightarrow A$}
\RightLabel{$L \rightarrow ^n$}
\BIC{$\Gamma, \nabla^{r+1} (B \rightarrow C) \Rightarrow A$}
\end{prooftree}
We can remove $\nabla^n A$ from $\D_2$ by $\IH(\D_1'')$. We use $LW$ and $N$ multiple times on $\D_1'$, to prepare the other premise and apply $L \rightarrow ^n$ at last.
\begin{prooftree}
\noLine
\AXC{$\D_1'$}
\UIC{$\Gamma, \nabla^{r+1} (B \rightarrow C) \Rightarrow \nabla^r B$}
\RightLabel{$N^{(*)}$} \doubleLine
\UIC{$\nabla^n \Gamma, \nabla^{n+r+1} (B \rightarrow C) \Rightarrow \nabla^{n+r} B$}
\RightLabel{$LW$}
\UIC{$\nabla^n \Gamma, \nabla^{n+r+1} (B \rightarrow C), \Sigma \Rightarrow \nabla^{n+r} B$}
\noLine
\AXC{$\D_1''$}
\UIC{$\Gamma, \nabla^r C, \nabla^{r+1} (B \rightarrow C) \Rightarrow A$}
\noLine
\AXC{$\D_2$}
\UIC{$\Sigma, \nabla^n A \Rightarrow \Delta$}
\RightLabel{IH}
\BIC{$\nabla^n \Gamma, \nabla^{n+r+1} (B \rightarrow C), \nabla^{n+r} C, \Sigma \Rightarrow \Delta$}
\RightLabel{$L \rightarrow ^n$}
\BIC{$\nabla^n \Gamma, \nabla^{n+r+1} (B \rightarrow C), \Sigma \Rightarrow \Delta$}
\end{prooftree}
\noindent($N$): Let $A = \nabla B$ and suppose that $\D_1$ proves $\nabla \Gamma \Rightarrow \nabla B$ and $\D_2$ proves ${\Sigma, \nabla^n (\nabla B) \Rightarrow \Delta}$. Then $\IH(\D_1')$ gives us $\nabla^{n+1} \Gamma, \Sigma \Rightarrow \Delta$, which is the desired sequent.\\
Part \2. In this part we have the cases where $A$ is not principal in the last rule of $\D_2$. Notice that in all these cases, $\D_1$ ends with either of $R \top$, $R \wedge$, $R \vee_1$, $R \vee_2$, $R \rightarrow$ and $R \supset$. In these cases, we will use induction hypothesis on the proof-trees with smaller height than $\D_2$.
For the sake of briefness, we will only explain the cases where $\D_2$ ends with $L \wedge ^n$, $R \vee_1$, $R \rightarrow$ and $N$. We call the subtrees for the possible premises $\D_2'$ and $\D_2''$.
\noindent($L \wedge ^n$): Suppose that $\D_2$ ends with $L \wedge ^n$, but with a principal formula other than $A$.
\begin{prooftree}
\AXC{$\D_2'$} \noLine
\UIC{$\Sigma, \nabla^n A, \nabla^r B, \nabla^r C \Rightarrow \Delta$}
\RightLabel{$L \wedge ^n$}
\UIC{$\Sigma, \nabla^n A, \nabla^r (B \wedge C) \Rightarrow \Delta$}
\end{prooftree}
From induction hypothesis we have $\nabla^n \Gamma, \Sigma, \nabla^r B \Rightarrow \Delta$. By $L \wedge ^n$ we have ${\nabla^n \Gamma, \Sigma, \nabla^r (B \wedge C) \Rightarrow \Delta}$.\\
\noindent($R \vee_1$): Suppose that $D_2$ ends with $R \vee_1$.
\begin{prooftree}
\AXC{$\D_2'$} \noLine
\UIC{$\Sigma, \nabla^n A \Rightarrow B$}
\RightLabel{$R \vee_1$}
\UIC{$\Sigma, \nabla^n A \Rightarrow B \vee C$}
\end{prooftree}
Again, use the induction hypothesis to get $\nabla^n \Gamma, \Sigma \Rightarrow B$, then apply $R \vee_1$ to reach the desired sequent.\\
\noindent($R \rightarrow$): Suppose that $D_2$ ends with $R \rightarrow$.
\begin{prooftree}
\AXC{$\D_2'$} \noLine
\UIC{$\nabla \Sigma, \nabla^{n+1} A, B \Rightarrow C$}
\RightLabel{$R \rightarrow$}
\UIC{$\Sigma, \nabla^n A \Rightarrow B \rightarrow C$}
\end{prooftree}
From induction hypothesis, we have $\nabla^{n+1} \Gamma, \nabla \Sigma, B \Rightarrow C$. We can apply $R \rightarrow$ to get $\nabla^n \Gamma, \Sigma \Rightarrow B \rightarrow C$.\\
\noindent($N$): Suppose $\D_2$ ends with $N$.
\begin{prooftree}
\AXC{$\D_2'$} \noLine
\UIC{$\Sigma, \nabla^n A \Rightarrow \Delta$}
\RightLabel{$N$}
\UIC{$\nabla \Sigma, \nabla^{n+1} A \Rightarrow \nabla \Delta$}
\end{prooftree}
From the induction hypothesis we have $\nabla^n \Gamma, \Sigma \Rightarrow \Delta$. By $N$ we have $\nabla^{n+1} \Gamma, \nabla \Sigma \Rightarrow \nabla \Delta$, which is the desired sequent. Notice that $A$ can't have $\nabla$, because $\D_1$ can not prove a sequent with $\nabla$ on its succedent.\\
Part\3. In this part, we assume that $A$ is principal in $\D_1$ and $\nabla^n A$ is principal in $\D_2$. Obviously, the last rules in both $\D_1$ and $\D_2$ should match, so that they can have $A$ and $\nabla^n A$ as their principal formula. So the only possible cases are those where the $\D_1$ and $\D_2$ respectively end with either $R \wedge$ and $L \wedge ^n$, $R \vee_1$ and $L \vee ^n$, $R \vee_2$ and $L \vee ^n$, $R \rightarrow$ and $L \rightarrow ^n$, or $R \supset$ and $L \supset ^n$. As before, the subtrees for the premises are called $\D_1'$, $\D_1''$, $\D_2'$ and $\D_2''$.
In these cases, subformulas of $A$ (up to $\nabla$) are of a smaller rank than $A$. So, by induction hypothesis, we can assume the claim of the theorem holds for them in place of $A$. As before, use of induction hypothesis in the proof-trees is indicated by $\IH$.
Now, suppose $\D_1$ and $\D_2$ end with the following rules, where $A$ and $\nabla^n A$ are principal.
\noindent($R \wedge$ and $L \wedge ^n$): Suppose $D_1$ ends with $R \wedge$ and $D_2$ ends with $L \wedge ^n$. So $A$ must be of the form $A_1 \wedge A_2$.
\begin{prooftree}
\noLine
\AXC{$\D_1'$}
\UIC{$\Gamma \Rightarrow A_1$}
\noLine
\AXC{$\D_1''$}
\UIC{$\Gamma \Rightarrow A_2$}
\RightLabel{$R \wedge$}
\BIC{$\Gamma \Rightarrow A_1 \wedge A_2$}
\noLine
\AXC{$\D_2'$}
\UIC{$\Sigma, \nabla^n A_1, \nabla^n A_2 \Rightarrow \Delta$}
\RightLabel{$L \wedge ^n$}
\UIC{$\Sigma, \nabla^n (A_1 \wedge A_2) \Rightarrow \Delta$}
\noLine
\BIC{}
\end{prooftree}
Then
\begin{prooftree}
\AXC{$\D_1''$}\noLine
\UIC{$\Gamma \Rightarrow A_2$}
\AXC{$\D_1'$}\noLine
\UIC{$\Gamma \Rightarrow A_1$}
\AXC{$\D_2'$}\noLine
\UIC{$\Sigma, \nabla^n A_1, \nabla^n A_2 \Rightarrow \Delta$}
\RightLabel{$\IH$}
\BIC{$\nabla^n \Gamma, \Sigma, \nabla^n A_2 \Rightarrow \Delta$}
\RightLabel{$\IH$}
\BIC{$(\nabla^n \Gamma)^2, \Sigma \Rightarrow \Delta$}
\RightLabel{$Lc^{(*)}$}\doubleLine
\UIC{$\nabla^n \Gamma, \Sigma \Rightarrow \Delta$}
\end{prooftree}
Notice that both $A_1$ and $A_2$ have a lower rank than $A$. Also notice that we are using Theorem \ref{thm:lc-adm} multiple times.\\
\noindent($R \vee_1$ or $R \vee_2$, and $L \vee ^n$):
Suppose that $D_1$ ends with $R \vee_1$ and $D_2$ ends with $L \vee ^n$. So $A = A_1 \vee A_2$.
\begin{prooftree}
\noLine
\AXC{$\D_1'$}
\UIC{$\Gamma \Rightarrow A_1$}
\RightLabel{$R \vee_1$}
\UIC{$\Gamma \Rightarrow A_1 \vee A_2$}
\noLine
\AXC{$\D_2'$}
\UIC{$\Sigma, \nabla^n A_1 \Rightarrow \Delta$}
\noLine
\AXC{$\D_2''$}
\UIC{$\Sigma, \nabla^n A_2 \Rightarrow \Delta$}
\RightLabel{$L \vee ^n$}
\BIC{$\Sigma, \nabla^n (A_1 \vee A_2) \Rightarrow \Delta$}
\noLine
\BIC{}
\end{prooftree}
Then using induction hypothesis for $A_1$, we have
\begin{prooftree}
\AXC{$\D_1'$}\noLine
\UIC{$\Gamma \Rightarrow A_1$}
\AXC{$\D_2'$}\noLine
\UIC{$\Sigma, \nabla^n A_1 \Rightarrow \Delta$}
\RightLabel{$\IH$}
\BIC{$\nabla^n \Gamma, \Sigma \Rightarrow \Delta$}
\end{prooftree}
The case where $D_1$ ends with $R \vee_2$ is similar.\\
\noindent($R \rightarrow$ and $L \rightarrow ^n$): Let $D_1$ and $D_2$ end with $R \rightarrow$ and $L \rightarrow ^n$ respectively. So $A = A_1 \rightarrow A_2$.
\begin{prooftree}
\noLine
\AXC{$\D_1'$}
\UIC{$\nabla \Gamma, A_1 \Rightarrow A_2$}
\RightLabel{$R \rightarrow$}
\UIC{$\Gamma \Rightarrow A_1 \rightarrow A_2$}
\noLine
\AXC{$\D_2'$}
\UIC{$\Sigma, \nabla^{n+1} (A_1 \rightarrow A_2) \Rightarrow \nabla^n A_1$}
\noLine
\AXC{$\D_2''$}
\UIC{$\Sigma, \nabla^{n+1} (A_1 \rightarrow A_2), \nabla^n A_2 \Rightarrow \Delta$}
\RightLabel{$L \rightarrow ^n$}
\BIC{$\Sigma, \nabla^{n+1} (A_1 \rightarrow A_2) \Rightarrow \Delta$}
\noLine
\BIC{}
\end{prooftree}
Let the following proof-tree be called $\D$:
\begin{prooftree}
\AXC{$\D_1'$} \noLine
\UIC{$\nabla \Gamma, A_1 \Rightarrow A_2$}
\AXC{$\D_1$} \noLine
\UIC{$\Gamma \Rightarrow A_1 \rightarrow A_2$}
\AXC{$\D_2''$} \noLine
\UIC{$\Sigma, \nabla^{n+1} (A_1 \rightarrow A_2), \nabla^n A_2 \Rightarrow \Delta$}
\RightLabel{IH}
\BIC{$\nabla^{n+1} \Gamma, \Sigma, \nabla^n A_2 \Rightarrow \Delta$}
\LeftLabel{$\D: ~~~$} \RightLabel{$\IH$}
\BIC{$(\nabla^{n+1} \Gamma)^2, \nabla^n A_1, \Sigma \Rightarrow \Delta$}
\end{prooftree}
Notice that the first usage of the induction hypothesis is for $\D_2''$, which has a smaller height than $\D_2$. The other usage is for $A_2$, which has a smaller rank than $A$. Now we have
\begin{prooftree}
\AXC{$\D_1$} \noLine
\UIC{$\Gamma \Rightarrow A_1 \rightarrow A_2$}
\AXC{$\D_2'$} \noLine
\UIC{$\Sigma, \nabla^{n+1} (A_1 \rightarrow A_2) \Rightarrow \nabla^n A_1$}
\RightLabel{IH}
\BIC{$\nabla^{n+1} \Gamma, \Sigma \Rightarrow \nabla^n A_1$}
\AXC{$\D$}
\RightLabel{$\IH$}
\BIC{$(\nabla^{n+1} \Gamma)^3, \Sigma^2 \Rightarrow \Delta$}
\RightLabel{$Lc^{(*)}$} \doubleLine
\UIC{$\nabla^{n+1} \Gamma, \Sigma \Rightarrow \Delta$}
\end{prooftree}
Again, two usages of the induction hypothesis are for different inductions, applied on the height of $\D_2$ and the rank of $A$, respectively. Also, again, notice that we are using Theorem \ref{thm:lc-adm} multiple times.
\noindent($R \supset$ and $L \supset ^n$):
Let $A = A_1 \supset A_2$ and $D_1$ and $D_2$ end with $R \supset$ and $L \supset ^n$ respectively.
\begin{prooftree}
\noLine
\AXC{$\D_1'$}
\UIC{$\Gamma, A_1 \Rightarrow A_2$}
\RightLabel{$R \supset$}
\UIC{$\Gamma \Rightarrow A_1 \supset A_2$}
\noLine
\AXC{$\D_2'$}
\UIC{$\Sigma, \nabla^{n} (A_1 \supset A_2) \Rightarrow \nabla^n A_1$}
\noLine
\AXC{$\D_2''$}
\UIC{$\Sigma, \nabla^{n} (A_1 \supset A_2), \nabla^n A_2 \Rightarrow \Delta$}
\RightLabel{$L \supset ^n$}
\BIC{$\Sigma, \nabla^{n} (A_1 \supset A_2) \Rightarrow \Delta$}
\noLine
\BIC{}
\end{prooftree}
Similar to the previous case, let $\D$ be the following proof-tree:
\begin{prooftree}
\AXC{$\D_1'$} \noLine
\UIC{$\Gamma, A_1 \Rightarrow A_2$}
\AXC{$\D_1$} \noLine
\UIC{$\Gamma \Rightarrow A_1 \supset A_2$}
\AXC{$\D_2''$} \noLine
\UIC{$\Sigma, \nabla^{n} (A_1 \supset A_2), \nabla^n A_2 \Rightarrow \Delta$}
\RightLabel{IH}
\BIC{$\nabla^{n} \Gamma, \Sigma, \nabla^n A_2 \Rightarrow \Delta$}
\LeftLabel{$\D: ~~~$} \RightLabel{$\IH$}
\BIC{$(\nabla^{n} \Gamma)^2, \nabla^n A_1, \Sigma \Rightarrow \Delta$}
\end{prooftree}
Then
\begin{prooftree}
\AXC{$\D_1$} \noLine
\UIC{$\Gamma \Rightarrow A_1 \supset A_2$}
\AXC{$\D_2'$} \noLine
\UIC{$\Sigma, \nabla^{n} (A_1 \supset A_2) \Rightarrow \nabla^n A_1$}
\RightLabel{IH}
\BIC{$\nabla^{n} \Gamma, \Sigma \Rightarrow \nabla^n A_1$}
\AXC{$\D$}
\RightLabel{$\IH$}
\BIC{$(\nabla^{n} \Gamma)^3, \Sigma^2 \Rightarrow \Delta$}
\RightLabel{$Lc^{(*)}$} \doubleLine
\UIC{$\nabla^{n} \Gamma, \Sigma \Rightarrow \Delta$}
\end{prooftree}
\vspace{1cm}
We have contructed a proof-tree for the desired sequent, in all cases for any two possible pair of rules in $\LDL$. This concludes the proof of the theorem in all cases.
\end{proof}