-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
630 lines (536 loc) · 24.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
''''Writing everything into one script..'''
from __future__ import print_function
import os
import imp
import sys
import time
import json
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from torch.autograd import Variable
from functools import reduce
from tqdm import tqdm
from tensorboardX import SummaryWriter
from funcs import *
from models.wide_resnet import WideResNet, WRN_50_2
from models.darts import DARTS, Cutout, _data_transforms_cifar10 as darts_transforms
from models.MobileNetV2 import MobileNetV2
os.mkdir('checkpoints/') if not os.path.isdir('checkpoints/') else None
parser = argparse.ArgumentParser(description='Student/teacher training')
parser.add_argument('dataset', type=str, choices=['cifar10', 'cifar100', 'imagenet'], help='Choose between Cifar10/100/imagenet.')
parser.add_argument('mode', choices=['student','teacher'], type=str, help='Learn a teacher or a student')
parser.add_argument('--imagenet_loc', default='/disk/scratch_ssd/imagenet',type=str, help='folder containing imagenet train and val folders')
parser.add_argument('--workers', default=2, type=int, help='No. of data loading workers. Make this high for imagenet')
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
parser.add_argument('--GPU', default=None, type=str, help='GPU to use')
parser.add_argument('--student_checkpoint', '-s', default='wrn_40_2_student_KT',type=str, help='checkpoint to save/load student')
parser.add_argument('--teacher_checkpoint', '-t', default='wrn_40_2_T',type=str, help='checkpoint to load in teacher')
#network stuff
parser.add_argument('--network', default='WideResNet', type=str, help='network to use')
parser.add_argument('--wrn_depth', default=40, type=int, help='depth for WRN')
parser.add_argument('--wrn_width', default=2, type=float, help='width for WRN')
parser.add_argument('--module', default=None, type=str, help='path to file containing custom Conv and maybe Block module definitions')
parser.add_argument('--blocktype', default='Basic',type=str, help='blocktype used if specify a --conv')
parser.add_argument('--conv', default=None, type=str, help='Conv type')
parser.add_argument('--AT_split', default=1, type=int, help='group splitting for AT loss')
parser.add_argument('--budget', default=None, type=float, help='budget of parameters to use for the network')
#learning stuff
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--lr_decay_ratio', default=0.2, type=float, help='learning rate decay')
parser.add_argument('--temperature', default=4, type=float, help='temp for KD')
parser.add_argument('--alpha', default=0.0, type=float, help='alpha for KD')
parser.add_argument('--aux_loss', default='AT', type=str, help='AT or SE loss')
parser.add_argument('--beta', default=1e3, type=float, help='beta for AT')
parser.add_argument('--epoch_step', default='[60,120,160]', type=str,
help='json list with epochs to drop lr on')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--print_freq', default=10, type=int, help="print stats frequency")
parser.add_argument('--batch_size', default=128, type=int,
help='minibatch size')
parser.add_argument('--weight_decay', default=0.0005, type=float)
parser.add_argument('--nocrswd', action='store_true', help='Disable compression ratio scaled weight decay.')
parser.add_argument('--clip_grad', default=None, type=float)
args = parser.parse_args()
if args.mode == 'teacher':
logdir = "runs/%s"%args.teacher_checkpoint
elif args.mode == 'student':
logdir = "runs/%s.%s"%(args.teacher_checkpoint, args.student_checkpoint)
append = 0
while os.path.isdir(logdir+".%i"%append):
append += 1
if append > 0:
logdir = logdir+".%i"%append
writer = SummaryWriter(logdir)
def record_oom(train_func):
def wrapper(*args):
try:
_ = train_func(*args)
result = (True, "Success")
except RuntimeError as e:
result = (False, str(e))
except AssertionError as e:
result = (True, "Success")
except Exception as e:
# something else that's not a memory error going wrong
result = (False, str(e))
logfile = "oom_checks.json"
if os.path.exists(logfile):
with open(logfile, 'r') as f:
logs = json.load(f)
else:
logs = []
logs.append((sys.argv, result))
with open(logfile, 'w') as f:
f.write(json.dumps(logs))
assert False, "recorded"
return wrapper
def train_teacher(net):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
net.train()
end = time.time()
for batch_idx, (inputs, targets) in enumerate(trainloader):
# measure data loading time
data_time.update(time.time() - end)
if use_cuda:
inputs, targets = inputs.cuda(non_blocking=True), targets.cuda(non_blocking=True)
if isinstance(net, DARTS):
outputs, _, aux = net(inputs)
outputs = torch.cat([outputs, aux], 0)
targets = torch.cat([targets, targets], 0)
else:
outputs, _ = net(inputs)
loss = criterion(outputs, targets)
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
err1 = 100. - prec1
err5 = 100. - prec5
losses.update(loss.item(), inputs.size(0))
top1.update(err1[0], inputs.size(0))
top5.update(err5[0], inputs.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if batch_idx % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Error@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Error@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, batch_idx, len(trainloader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
writer.add_scalar('train_loss', losses.avg, epoch)
writer.add_scalar('train_top1', top1.avg, epoch)
writer.add_scalar('train_top5', top5.avg, epoch)
train_losses.append(losses.avg)
train_errors.append(top1.avg)
def train_student(net, teach):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
net.train()
teach.eval()
end = time.time()
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs = inputs.cuda(non_blocking=True)
targets = targets.cuda(non_blocking=True)
if isinstance(net, DARTS):
outputs, student_AMs, aux = net(inputs)
if aux is not None:
outputs_student = torch.cat([outputs, aux], 0)
targets_plus_aux = torch.cat([targets, targets], 0)
else:
outputs_student = outputs
targets_plus_aux = targets
with torch.no_grad():
outputs_teacher, teacher_AMs, _ = teach(inputs)
if aux is not None:
outputs_teacher = torch.cat([outputs_teacher, outputs_teacher], 0)
else:
outputs_student, student_AMs = net(inputs)
outputs = outputs_student
targets_plus_aux = targets
with torch.no_grad():
outputs_teacher, teacher_AMs = teach(inputs)
# If alpha is 0 then this loss is just a cross entropy.
loss = distillation(outputs_student, outputs_teacher, targets_plus_aux, args.temperature, args.alpha)
#Add an attention tranfer loss for each intermediate. Let's assume the default is three (as in the original
#paper) and adjust the beta term accordingly.
adjusted_beta = (args.beta*3)/len(student_AMs)
for i in range(len(student_AMs)):
loss += adjusted_beta * F.mse_loss(student_AMs[i], teacher_AMs[i])
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
err1 = 100. - prec1
err5 = 100. - prec5
losses.update(loss.item(), inputs.size(0))
top1.update(err1[0], inputs.size(0))
top5.update(err5[0], inputs.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
if args.clip_grad is not None:
max_grad = 0.
for p in net.parameters():
g = p.grad.max().item()
if g > max_grad:
max_grad = g
nn.utils.clip_grad_norm(net.parameters(), args.clip_grad)
print("Max grad: ", max_grad)
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if batch_idx % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Error@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Error@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, batch_idx, len(trainloader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
writer.add_scalar('train_loss', losses.avg, epoch)
writer.add_scalar('train_top1', top1.avg, epoch)
writer.add_scalar('train_top5', top5.avg, epoch)
train_losses.append(losses.avg)
train_errors.append(top1.avg)
def validate(net, checkpoint=None):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
net.eval()
end = time.time()
for batch_idx, (inputs, targets) in enumerate(valloader):
inputs, targets = inputs.cuda(), targets.cuda()
with torch.no_grad():
inputs, targets = Variable(inputs), Variable(targets)
if isinstance(net, DARTS):
outputs, _, _ = net(inputs)
else:
outputs, _ = net(inputs)
if isinstance(outputs,tuple):
outputs = outputs[0]
loss = criterion(outputs, targets)
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
err1 = 100. - prec1
err5 = 100. - prec5
losses.update(loss.item(), inputs.size(0))
top1.update(err1[0], inputs.size(0))
top5.update(err5[0], inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if batch_idx % args.print_freq == 0:
print('validate: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Error@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Error@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
batch_idx, len(valloader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(' * Error@1 {top1.avg:.3f} Error@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
if checkpoint:
writer.add_scalar('val_loss', losses.avg, epoch)
writer.add_scalar('val_top1', top1.avg, epoch)
writer.add_scalar('val_top5', top5.avg, epoch)
val_losses.append(losses.avg)
val_errors.append(top1.avg)
if isinstance(net, torch.nn.DataParallel):
state_dict = net.module.state_dict()
else:
state_dict = net.state_dict()
print('Saving..')
state = {
'net': state_dict,
'epoch': epoch,
'args': sys.argv,
'width': args.wrn_width,
'depth': args.wrn_depth,
'conv': args.conv,
'blocktype': args.blocktype,
'module': args.module,
'train_losses': train_losses,
'train_errors': train_errors,
'val_losses': val_losses,
'val_errors': val_errors,
}
print('SAVED!')
torch.save(state, 'checkpoints/%s.t7' % checkpoint)
def set_for_budget(eval_network_size, conv_type, budget):
assert False, "Deprecated this because I don't trust it 100%"
# set bounds using knowledge of conv_type hyperparam domain
if 'ACDC' == conv_type:
bounds = (2, 128)
post_process = lambda x: int(round(x))
elif 'Hashed' == conv_type:
bounds = (0.001,0.9)
post_process = lambda x: x # do nothing
elif 'SepHashed' == conv_type:
bounds = (0.001,0.9)
post_process = lambda x: x # do nothing
elif 'Generic' == conv_type:
bounds = (0.1,0.9)
post_process = lambda x: x # do nothing
elif 'TensorTrain' == conv_type:
bounds = (0.1,0.9)
post_process = lambda x: x # do nothing
elif 'Tucker' == conv_type:
bounds = (0.1,0.9)
post_process = lambda x: x # do nothing
elif 'CP' == conv_type:
bounds = (0.1,0.9)
post_process = lambda x: x # do nothing
else:
raise ValueError("Don't know: "+conv_type)
def obj(h):
return abs(budget-eval_network_size(h))
from scipy.optimize import minimize_scalar
minimizer = minimize_scalar(obj, bounds=bounds, method='bounded')
return post_process(minimizer.x)
def n_params(net):
return sum([reduce(lambda x,y:x*y, p.size()) for p in net.parameters()])
def darts_defaults(args):
args.batch_size = 96
args.lr = 0.025
args.momentum = 0.9
args.weight_decay = 3e-4
args.epochs = 600
return args
def imagenet_defaults(args):
args.batch_size=256
args.epochs = 90
args.lr_decay_ratio = 0.1
args.weight_decay = 1e-4
args.epoch_step = '[30,60]'
args.workers = 16
return args
def mobilenetv2_defaults(args):
args.batch_size=256
args.epochs = 150
args.lr = 0.05
args.weight_decay = 4e-5
args.workers = 16
return args
def get_scheduler(optimizer, epoch_step, args):
if args.network == 'WideResNet' or args.network == 'WRN_50_2':
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=epoch_step,
gamma=args.lr_decay_ratio)
elif args.network == 'DARTS' or args.network == 'MobileNetV2':
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs))
return scheduler
if __name__ == '__main__':
if args.aux_loss == 'AT':
aux_loss = at_loss
elif args.aux_loss == 'SE':
aux_loss = se_loss
if args.network == 'DARTS':
args = darts_defaults(args) # different training hyperparameters
elif args.network == 'WRN_50_2':
args = imagenet_defaults(args)
elif args.network == 'MobileNetV2':
args = mobilenetv2_defaults(args)
print(vars(args))
parallelise = None
if args.GPU is not None:
if args.GPU[0] != '[':
args.GPU = '[' + args.GPU + ']'
args.GPU = [i for i, _ in enumerate(json.loads(args.GPU))]
if len(args.GPU) > 1:
def parallelise(model):
model = torch.nn.DataParallel(model, device_ids=args.GPU)
model.grouped_parameters = model.module.grouped_parameters
return model
else:
os.environ["CUDA_VISIBLE_DEVICES"] = "%i"%args.GPU[0]
use_cuda = torch.cuda.is_available()
assert use_cuda, 'Error: No CUDA!'
val_losses = []
train_losses = []
val_errors = []
train_errors = []
best_acc = 0
start_epoch = 0
epoch_step = json.loads(args.epoch_step)
# Data and loaders
print('==> Preparing data..')
if args.dataset == 'cifar10':
num_classes = 10
if args.network == 'DARTS':
transforms_train, transforms_validate = darts_transforms()
else:
transforms_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010)),
Cutout(16)])
transforms_validate = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010)),])
trainset = torchvision.datasets.CIFAR10(root='/disk/scratch/datasets/cifar',
train=True, download=False, transform=transforms_train)
valset = torchvision.datasets.CIFAR10(root='/disk/scratch/datasets/cifar',
train=False, download=False, transform=transforms_validate)
elif args.dataset == 'cifar100':
num_classes = 100
if args.network == 'DARTS':
raise NotImplementedError("Could use transforms for CIFAR-10, but not ported yet.")
transforms_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4866, 0.4409), (0.2009, 0.1984, 0.2023)),
])
transforms_validate = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4866, 0.4409), (0.2009, 0.1984, 0.2023)),
])
trainset = torchvision.datasets.CIFAR100(root='/disk/scratch/datasets/cifar100',
train=True, download=True, transform=transforms_train)
validateset = torchvision.datasets.CIFAR100(root='/disk/scratch/datasets/cifar100',
train=False, download=True, transform=transforms_validate)
elif args.dataset == 'imagenet':
num_classes = 1000
traindir = os.path.join(args.imagenet_loc, 'train')
valdir = os.path.join(args.imagenet_loc, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
transform_train = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
transform_validate = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])
trainset = torchvision.datasets.ImageFolder(traindir, transform_train)
valset = torchvision.datasets.ImageFolder(valdir, transform_validate)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers,
pin_memory = True if args.dataset == 'imagenet' else False)
valloader = torch.utils.data.DataLoader(valset, batch_size=min(100,args.batch_size), shuffle=False,
num_workers=args.workers,
pin_memory=True if args.dataset == 'imagenet' else False)
criterion = nn.CrossEntropyLoss()
# a function for building networks
def build_network(Conv, Block):
if args.network == 'WideResNet':
return WideResNet(args.wrn_depth, args.wrn_width, Conv, Block,
num_classes=num_classes, dropRate=0, s=args.AT_split)
elif args.network == 'WRN_50_2':
return WRN_50_2(Conv)
elif args.network == 'MobileNetV2':
return MobileNetV2(Conv)
elif args.network == 'DARTS':
return DARTS(Conv, num_classes=num_classes)
# if a budget is specified, figure out what we have to set the
# hyperparameter to
if args.budget is not None:
def eval_network_size(hyperparam):
net = build_network(*what_conv_block(args.conv+"_%s"%hyperparam, args.blocktype, args.module))
return n_params(net)
hyperparam = set_for_budget(eval_network_size, args.conv, args.budget)
args.conv = args.conv + "_%s"%hyperparam
# get the classes implementing the Conv and Blocks we're going to use in
# the network
Conv, Block = what_conv_block(args.conv, args.blocktype, args.module)
def load_network(loc):
net_checkpoint = torch.load(loc)
start_epoch = net_checkpoint['epoch']
SavedConv, SavedBlock = what_conv_block(net_checkpoint['conv'],
net_checkpoint['blocktype'], net_checkpoint['module'])
net = build_network(SavedConv, SavedBlock).cuda()
torch.save(net.state_dict(), "checkpoints/darts.template.t7")
net.load_state_dict(net_checkpoint['net'])
return net, start_epoch
if args.mode == 'teacher':
if args.resume:
print('Mode Teacher: Loading teacher and continuing training...')
teach, start_epoch = load_network('checkpoints/%s.t7' % args.teacher_checkpoint)
else:
print('Mode Teacher: Making a teacher network from scratch and training it...')
teach = build_network(Conv, Block).cuda()
if parallelise is not None:
teach = parallelise(teach)
parameters = teach.grouped_parameters(args.weight_decay) if not args.nocrswd else teach.parameters()
optimizer = optim.SGD(parameters,
lr=args.lr, momentum=args.momentum,
weight_decay=args.weight_decay)
scheduler = get_scheduler(optimizer, epoch_step, args)
def schedule_drop_path(epoch, net):
net.drop_path_prob = 0.2 * epoch / (start_epoch+args.epochs)
# Decay the learning rate depending on the epoch
for e in range(0,start_epoch):
scheduler.step()
for epoch in tqdm(range(start_epoch, args.epochs)):
scheduler.step()
if args.network == 'DARTS': schedule_drop_path(epoch, teach)
print('Teacher Epoch %d:' % epoch)
print('Learning rate is %s' % [v['lr'] for v in optimizer.param_groups][0])
writer.add_scalar('learning_rate', [v['lr'] for v in optimizer.param_groups][0], epoch)
train_teacher(teach)
validate(teach, args.teacher_checkpoint)
elif args.mode == 'student':
print('Mode Student: First, load a teacher network and convert for (optional) attention transfer')
teach, _ = load_network('checkpoints/%s.t7' % args.teacher_checkpoint)
if parallelise is not None:
teach = parallelise(teach)
# Very important to explicitly say we require no gradients for the teacher network
for param in teach.parameters():
param.requires_grad = False
validate(teach)
val_losses, val_errors = [], [] # or we'd save the teacher's error as the first entry
if args.resume:
print('Mode Student: Loading student and continuing training...')
student, start_epoch = load_network('checkpoints/%s.t7' % args.student_checkpoint)
else:
print('Mode Student: Making a student network from scratch and training it...')
student = build_network(Conv, Block).cuda()
if parallelise is not None:
student = parallelise(student)
parameters = student.grouped_parameters(args.weight_decay) if not args.nocrswd else student.parameters()
optimizer = optim.SGD(parameters,
lr=args.lr, momentum=args.momentum,
weight_decay=args.weight_decay)
scheduler = get_scheduler(optimizer, epoch_step, args)
def schedule_drop_path(epoch, net):
net.drop_path_prob = 0.2 * epoch / (start_epoch+args.epochs)
# Decay the learning rate depending on the epoch
for e in range(0, start_epoch):
scheduler.step()
for epoch in tqdm(range(start_epoch, args.epochs)):
scheduler.step()
if args.network == 'DARTS': schedule_drop_path(epoch, student)
print('Student Epoch %d:' % epoch)
print('Learning rate is %s' % [v['lr'] for v in optimizer.param_groups][0])
writer.add_scalar('learning_rate', [v['lr'] for v in optimizer.param_groups][0], epoch)
train_student(student, teach)
validate(student, args.student_checkpoint)