forked from davidsaOpenu/xv6-ns
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cgroup.c
921 lines (783 loc) · 25.1 KB
/
cgroup.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
#include "cgroup.h"
#include "cgfs.h"
#include "spinlock.h"
#include "memlayout.h"
#define MAX_DES_DEF 64
#define MAX_DEP_DEF 64
#define MAX_CGROUP_FILE_NAME_LENGTH 64
#define CGROUP_ACCOUNT_PERIOD_100MS (100 * 1000)
struct
{
struct spinlock lock;
struct cgroup cgroups[NPROC];
} cgtable;
void cginit(void)
{
initlock(&cgtable.lock, "cgtable");
}
void cgroup_lock()
{
acquire(&cgtable.lock);
}
void cgroup_unlock()
{
release(&cgtable.lock);
}
static struct cgroup * unsafe_get_cgroup_by_path(char * path)
{
char fpath[MAX_PATH_LENGTH];
format_path(fpath, path);
if (*fpath != 0)
for (int i = 0;
i < sizeof(cgtable.cgroups) / sizeof(cgtable.cgroups[0]);
i++)
if (strcmp(cgtable.cgroups[i].cgroup_dir_path, fpath) == 0)
return &cgtable.cgroups[i];
return 0;
}
static void unsafe_set_cgroup_dir_path(struct cgroup * cgroup, char * path)
{
char fpath[MAX_PATH_LENGTH];
format_path(fpath, path);
char * fpathp = fpath;
char * cgroup_dir_path = cgroup->cgroup_dir_path;
if (*fpathp != 0)
for (int i = 0; (i < sizeof(cgroup->cgroup_dir_path)) &&
((*cgroup_dir_path++ = *fpathp++) != 0);
i++)
;
}
static void unsafe_cgroup_erase(struct cgroup * cgroup, struct proc * proc)
{
// Iterate all cgroup processes.
for (unsigned int i = 0;
i < sizeof(cgroup->proc) / sizeof(*cgroup->proc);
++i) {
// If process was found, remove it from the cgroup.
if (proc == cgroup->proc[i]) {
proc->cgroup = cgroup_root();
cgroup->proc[i] = 0;
// Update current number of processes in cgroup subtree for all
// ancestors.
while (cgroup != 0) {
cgroup->num_of_procs--;
cgroup->current_mem -= proc->sz;
if (cgroup->num_of_procs == 0)
cgroup->populated = 0;
cgroup = cgroup->parent;
}
break;
}
}
}
void format_path(char * buf, char * path)
{
/* If the path does not start with '/' then add the current working
* directory path to the start.*/
struct proc * curproc = myproc();
char * bufp = buf;
if (*path != '/') {
char * cwdp = curproc->cwdp;
strncpy(bufp, cwdp, strlen(cwdp));
bufp += strlen(cwdp);
if (*(bufp - 1) != '/')
*bufp++ = '/';
}
/* Get Pointer to end of path ('/'s at the end don't count)*/
char * path_end = path + strlen(path) - 1;
while (path_end > path && *path_end == '/')
path_end--;
/* Copy formatted path to buffer*/
while (path <= path_end) {
if (bufp > buf && *(bufp - 1) == '/' && *path == '.') {
if (*(path + 1) == 0 || *(path + 1) == '/') {
path += 2;
continue;
}
if (*(path + 1) == '.' &&
(*(path + 2) == 0 || *(path + 2) == '/')) {
bufp -= 2;
while (bufp >= buf && *bufp != '/')
bufp--;
if (bufp < buf) {
*buf = 0;
return;
}
bufp++;
path += 3;
continue;
}
}
*bufp++ = *path++;
}
/* If the path ends with '/' and is not "/" then remove last '/'. */
if (bufp - 1 > buf && *(bufp - 1) == '/')
*(bufp - 1) = 0;
*bufp = 0;
}
struct cgroup * cgroup_root(void)
{
return &cgtable.cgroups[0];
}
struct cgroup * cgroup_create(char * path)
{
char fpath[MAX_PATH_LENGTH];
format_path(fpath, path);
char parent_path[MAX_PATH_LENGTH];
char new_dir_name[MAX_PATH_LENGTH];
if (get_dir_name(fpath, parent_path) < 0 || get_base_name(fpath, new_dir_name) < 0)
return 0;
acquire(&cgtable.lock);
struct cgroup * parent_cgp = unsafe_get_cgroup_by_path(parent_path);
/*Cgroup has to be created as a child of another cgroup. (Root cgroup
* is not created here)*/
if (parent_cgp == 0) {
release(&cgtable.lock);
return 0;
}
/*Check if we are allowed to create a new cgorup at the path. For each
* ancestor check that we haven't reached maximum number of descendants
* or maximum subtree depth.*/
struct cgroup * parent_cgp_temp = parent_cgp;
for (int i = 0; parent_cgp_temp != 0; i++) {
if (parent_cgp_temp->max_depth_value <= i) {
release(&cgtable.lock);
panic("cgroup_create: max depth allowed reached");
}
if (parent_cgp_temp->max_descendants_value == parent_cgp_temp->nr_descendants) {
release(&cgtable.lock);
panic("cgroup_create: max number of descendants allowed "
"reached");
}
parent_cgp_temp = parent_cgp_temp->parent;
}
/*Find avalible cgroup slot.*/
struct cgroup * new_cgp = 0;
for (int i = 1;
i < sizeof(cgtable.cgroups) / sizeof(cgtable.cgroups[0]);
i++)
if (*(cgtable.cgroups[i].cgroup_dir_path) == 0 &&
cgtable.cgroups[i].ref_count == 0) {
new_cgp = &cgtable.cgroups[i];
break;
}
/*Check if we have found an avalible slot.*/
if (new_cgp == 0) {
release(&cgtable.lock);
panic("cgroup_create: no avalible cgroup slots");
}
/*Initialize the new cgroup.*/
cgroup_initialize(new_cgp, fpath, parent_cgp);
/*Update number of descendant cgroups for each ancestor.*/
while (parent_cgp != 0) {
parent_cgp->nr_descendants++;
parent_cgp = parent_cgp->parent;
}
release(&cgtable.lock);
return new_cgp;
}
int cgroup_delete(char * path, char * type)
{
acquire(&cgtable.lock);
/*Get cgroup at given path.*/
struct cgroup * cgp = unsafe_get_cgroup_by_path(path);
/*If no cgroup at given path return -1.*/
if (cgp == 0) {
release(&cgtable.lock);
return -1;
}
if (strcmp(type, "umount") == 0 && cgp != cgroup_root()) {
release(&cgtable.lock);
return -2;
}
if (strcmp(type, "unlink") == 0 && cgp == cgroup_root()) {
release(&cgtable.lock);
return -2;
}
/*Check if we are allowed to delete the cgroup. Check if the cgroup has
* descendants or processes in it.*/
if (cgp->nr_descendants ||
(cgp->num_of_procs && cgp != cgroup_root())) {
release(&cgtable.lock);
return -2;
}
/*Delete the path.*/
*(cgp->cgroup_dir_path) = '\0';
char increase_num_dying_desc = 0;
if (cgp->ref_count > 0)
increase_num_dying_desc = 1;
/*Update number of descendant cgroups for each ancestor.*/
cgp = cgp->parent;
while (cgp != 0) {
cgp->nr_descendants--;
if (increase_num_dying_desc)
cgp->nr_dying_descendants++;
cgp = cgp->parent;
}
release(&cgtable.lock);
return 0;
}
void cgroup_initialize(struct cgroup * cgroup,
char * path,
struct cgroup * parent_cgroup)
{
/*Check if the cgroup is the root or not and initialize accordingly.*/
if (parent_cgroup == 0) {
cgroup->cpu_controller_avalible = 1;
cgroup->cpu_controller_enabled = 1;
cgroup->depth = 0;
*(cgroup->cgroup_dir_path) = 0;
cgroup->parent = 0;
cgroup->pid_controller_avalible = 1;
cgroup->pid_controller_enabled = 1;
cgroup->set_controller_avalible = 1;
cgroup->set_controller_enabled = 0;
cgroup->mem_controller_avalible = 1;
cgroup->mem_controller_enabled = 1;
}
else {
cgroup->parent = parent_cgroup;
/*Cgroup's cpu controller avalible only when it is enabled in the
* parent.*/
if (parent_cgroup->cpu_controller_enabled)
cgroup->cpu_controller_avalible = 1;
else
cgroup->cpu_controller_avalible = 0;
/*Cgroup's pid controller avalible only when it is enabled in the
* parent.*/
if (parent_cgroup->pid_controller_enabled)
cgroup->pid_controller_avalible = 1;
else
cgroup->pid_controller_avalible = 0;
/*Cgroup's set controller avalible only when it is enabled in the
* parent. Notice doesn't apply to root, it is not enabled in root*/
if (parent_cgroup == cgroup_root())
cgroup->set_controller_avalible = 1;
else {
if (parent_cgroup->set_controller_enabled)
cgroup->set_controller_avalible = 1;
else
cgroup->set_controller_avalible = 0;
}
/*Cgroup's memory controller avalible only when it is enabled in the
* parent.*/
if (parent_cgroup->mem_controller_enabled)
cgroup->mem_controller_avalible = 1;
else
cgroup->mem_controller_avalible = 0;
cgroup->pid_controller_enabled = 0;
cgroup->cpu_controller_enabled = 0;
cgroup->set_controller_enabled = 0;
cgroup->mem_controller_enabled = 0;
cgroup->depth = cgroup->parent->depth + 1;
unsafe_set_cgroup_dir_path(cgroup, path);
}
cgroup->ref_count = 0;
cgroup->num_of_procs = 0;
cgroup->populated = 0;
cgroup->current_mem = 0;
set_max_descendants_value(cgroup, MAX_DES_DEF);
set_max_depth_value(cgroup, MAX_DEP_DEF);
set_nr_descendants(cgroup, 0);
set_nr_dying_descendants(cgroup, 0);
// Without any changes, set the maximum number of processes to max in system
set_max_procs(cgroup, NPROC);
// Without any changes, set the default cpu id to be used as 0
set_cpu_id(cgroup, 0);
// By default a group is not frozen
frz_grp(cgroup, 0);
// By default a group has limit of KERNBASE memory.
set_max_mem(cgroup, KERNBASE);
cgroup->cpu_account_frame = 0;
cgroup->cpu_percent = 0;
cgroup->cpu_time = 0;
cgroup->cpu_period_time = 0;
cgroup->cpu_time_limit = ~0;
cgroup->cpu_account_period = CGROUP_ACCOUNT_PERIOD_100MS;
cgroup->cpu_nr_periods = 0;
cgroup->cpu_nr_throttled = 0;
cgroup->cpu_throttled_usec = 0;
cgroup->cpu_is_throttled_period = 0;
}
int cgroup_insert(struct cgroup * cgroup, struct proc * proc)
{
acquire(&cgtable.lock);
int res = unsafe_cgroup_insert(cgroup, proc);
release(&cgtable.lock);
return res;
}
int unsafe_cgroup_insert(struct cgroup * cgroup, struct proc * proc)
{
// If the number of processes in the cgroup is already at max allowed and pid controller enabled, return error
if (cgroup->pid_controller_enabled == 1 &&
(cgroup->num_of_procs + 1) > cgroup->max_num_of_procs)
return -1;
// If the process memory in addition to existing memory is over the limit and memory controller is enabled, return error.
if (cgroup->mem_controller_enabled == 1 &&
(cgroup->current_mem + proc->sz) > cgroup->max_mem)
return -1;
// Whether a free slot was found.
int found = 0;
// Index of the free slot.
unsigned int index = 0;
// Find available slot.
for (unsigned int i = 0;
i < sizeof(cgroup->proc) / sizeof(*cgroup->proc);
++i) {
// If not found yet, and the current entry is available, save the
// index and indicate that an entry was found.
if (!found && !cgroup->proc[i]) {
index = i;
found = 1;
continue;
}
// If process was found, return success.
if (proc == cgroup->proc[i]) {
return 0;
}
}
// If not found, return a failure.
if (!found) {
return -1;
}
// Erase the proc from the other cgroup.
if (proc->cgroup) {
unsafe_cgroup_erase(proc->cgroup, proc);
}
// Associate the process with the cgroup.
cgroup->proc[index] = proc;
// Set the cgroup of the current process.
proc->cgroup = cgroup;
// Update current number of processes in cgroup subtree for all
// ancestors.
while (cgroup != 0) {
cgroup->num_of_procs++;
cgroup->populated = 1;
cgroup->current_mem += proc->sz;
cgroup = cgroup->parent;
}
return 0;
}
void cgroup_erase(struct cgroup * cgroup, struct proc * proc)
{
acquire(&cgtable.lock);
unsafe_cgroup_erase(cgroup, proc);
release(&cgtable.lock);
}
int unsafe_enable_cpu_controller(struct cgroup * cgroup)
{
// If cgroup has processes in it, controllers can't be enabled.
if (!cgroup || cgroup->populated == 1) {
return -1;
}
// If controller is enabled do nothing.
if (cgroup->cpu_controller_enabled) {
return 0;
}
if (cgroup->cpu_controller_avalible) {
/* TODO: complete activation of controller. */
// Set cpu controller to enabled.
cgroup->cpu_controller_enabled = 1;
// Set cpu controller to avalible in all child cgroups.
for (int i = 1;
i < sizeof(cgtable.cgroups) / sizeof(cgtable.cgroups[0]);
i++)
if (cgtable.cgroups[i].parent == cgroup)
cgtable.cgroups[i].cpu_controller_avalible = 1;
}
return 0;
}
int enable_cpu_controller(struct cgroup * cgroup)
{
acquire(&cgtable.lock);
int res = unsafe_enable_cpu_controller(cgroup);
release(&cgtable.lock);
return res;
}
int unsafe_disable_cpu_controller(struct cgroup * cgroup)
{
if (!cgroup) {
return -1;
}
// If controller is disabled do nothing.
if (!cgroup->cpu_controller_enabled) {
return 0;
}
// Check that all child cgroups have cpu controller disabled. (cannot
// disable controller when children have it enabled)
for (int i = 1;
i < sizeof(cgtable.cgroups) / sizeof(cgtable.cgroups[0]);
i++)
if (cgtable.cgroups[i].parent == cgroup &&
cgtable.cgroups[i].cpu_controller_enabled) {
return -1;
}
/* TODO: complete deactivation of controller. */
// Set cpu controller to enabled.
cgroup->cpu_controller_enabled = 0;
// Set cpu controller to unavalible in all child cgroups.
for (int i = 1;
i < sizeof(cgtable.cgroups) / sizeof(cgtable.cgroups[0]);
i++)
if (cgtable.cgroups[i].parent == cgroup)
cgtable.cgroups[i].cpu_controller_avalible = 0;
return 0;
}
int disable_cpu_controller(struct cgroup * cgroup)
{
acquire(&cgtable.lock);
int res = unsafe_disable_cpu_controller(cgroup);
release(&cgtable.lock);
return res;
}
void set_cgroup_dir_path(struct cgroup * cgroup, char * path)
{
acquire(&cgtable.lock);
unsafe_set_cgroup_dir_path(cgroup, path);
release(&cgtable.lock);
}
struct cgroup * get_cgroup_by_path(char * path)
{
acquire(&cgtable.lock);
struct cgroup * cgp = unsafe_get_cgroup_by_path(path);
release(&cgtable.lock);
return cgp;
}
void set_max_descendants_value(struct cgroup * cgroup, unsigned int value)
{
if (value >= 0)
cgroup->max_descendants_value = value;
}
void set_max_depth_value(struct cgroup * cgroup, unsigned int value)
{
if (value >= 0)
cgroup->max_depth_value = value;
}
void set_nr_descendants(struct cgroup * cgroup, unsigned int value)
{
if (value >= 0)
cgroup->nr_descendants = value;
}
void set_nr_dying_descendants(struct cgroup * cgroup, unsigned int value)
{
if (value >= 0)
cgroup->nr_dying_descendants = value;
}
void get_cgroup_names_at_path(char * buf, char * path)
{
if (*path == 0)
return;
for (int i = 1;
i < sizeof(cgtable.cgroups) / sizeof(cgtable.cgroups[0]);
i++)
if (*(cgtable.cgroups[i].cgroup_dir_path) != 0 &&
strcmp(cgtable.cgroups[i].parent->cgroup_dir_path, path) ==
0) {
char * child_name =
&(cgtable.cgroups[i].cgroup_dir_path[strlen(path) + 1]);
int child_name_len = strlen(child_name);
while (*child_name != 0)
*buf++ = *child_name++;
buf += MAX_CGROUP_FILE_NAME_LENGTH - child_name_len;
}
}
int cgorup_num_of_immidiate_children(struct cgroup * cgroup)
{
char * path = cgroup->cgroup_dir_path;
int num = 0;
if (*path == 0)
return -1;
for (int i = 0;
i < sizeof(cgtable.cgroups) / sizeof(cgtable.cgroups[0]);
i++)
if (*(cgtable.cgroups[i].cgroup_dir_path) != 0 &&
strcmp(cgtable.cgroups[i].parent->cgroup_dir_path, path) == 0)
num++;
return num;
}
void decrement_nr_dying_descendants(struct cgroup * cgroup)
{
while (cgroup != 0) {
cgroup->nr_dying_descendants--;
cgroup = cgroup->parent;
}
}
int cg_open(cg_file_type type, char * filename, struct cgroup * cgp, int omode)
{
acquire(&cgtable.lock);
int res = unsafe_cg_open(type, filename, cgp, omode);
release(&cgtable.lock);
return res;
}
int cg_sys_open(char * path, int omode)
{
struct cgroup *cgp;
if ((cgp = get_cgroup_by_path(path)))
return cg_open(CG_DIR, 0, cgp, omode);
char dir_path[MAX_PATH_LENGTH];
char file_name[MAX_PATH_LENGTH];
if (get_dir_name(path, dir_path) == 0 && get_base_name(path, file_name) == 0 && (cgp = get_cgroup_by_path(dir_path)))
return cg_open(CG_FILE, file_name, cgp, omode);
return -1;
}
int cg_read(cg_file_type type, struct file * f, char * addr, int n)
{
acquire(&cgtable.lock);
int res = unsafe_cg_read(type, f, addr, n);
release(&cgtable.lock);
return res;
}
int cg_write(struct file * f, char * addr, int n)
{
acquire(&cgtable.lock);
int res = unsafe_cg_write(f, addr, n);
release(&cgtable.lock);
return res;
}
int cg_close(struct file * file)
{
acquire(&cgtable.lock);
int res = unsafe_cg_close(file);
release(&cgtable.lock);
return res;
}
int cg_stat(struct file * f, struct stat * st)
{
acquire(&cgtable.lock);
int res = unsafe_cg_stat(f, st);
release(&cgtable.lock);
return res;
}
int set_max_procs(struct cgroup * cgroup, int limit) {
// If no cgroup found, return error.
if (cgroup == 0)
return -1;
// Set the limit if it is within allowed parameters.
// 0 is used for testing.
if (limit >= 0 && limit <= NPROC) {
cgroup->max_num_of_procs = limit;
return 1;
}
return 0;
}
int unsafe_enable_pid_controller(struct cgroup *cgroup) {
// If cgroup has processes in it, controllers can't be enabled.
if (cgroup == 0 || cgroup->populated == 1) {
return -1;
}
// If controller is enabled do nothing.
if (cgroup->pid_controller_enabled) {
return 0;
}
if (cgroup->pid_controller_avalible) {
// Set pid controller to enabled.
cgroup->pid_controller_enabled = 1;
// Set pid controller to avalible in all child cgroups.
for (int i = 1;
i < sizeof(cgtable.cgroups) / sizeof(cgtable.cgroups[0]);
i++)
if (cgtable.cgroups[i].parent == cgroup)
cgtable.cgroups[i].pid_controller_avalible = 1;
}
return 0;
}
int unsafe_disable_pid_controller(struct cgroup *cgroup) {
if (cgroup == 0) {
return -1;
}
// If controller is disabled do nothing.
if (cgroup->pid_controller_enabled == 0) {
return 0;
}
// Check that all child cgroups have pid controller disabled. (cannot
// disable controller when children have it enabled)
for (int i = 1;
i < sizeof(cgtable.cgroups) / sizeof(cgtable.cgroups[0]);
i++)
if (cgtable.cgroups[i].parent == cgroup &&
cgtable.cgroups[i].pid_controller_enabled) {
return -1;
}
// Set pid controller to disabled.
cgroup->pid_controller_enabled = 0;
// Set pid controller to unavalible in all child cgroups.
for (int i = 1;
i < sizeof(cgtable.cgroups) / sizeof(cgtable.cgroups[0]);
i++)
if (cgtable.cgroups[i].parent == cgroup)
cgtable.cgroups[i].pid_controller_avalible = 0;
return 0;
}
int enable_pid_controller(struct cgroup * cgroup)
{
acquire(&cgtable.lock);
int res = unsafe_enable_pid_controller(cgroup);
release(&cgtable.lock);
return res;
}
int disable_pid_controller(struct cgroup * cgroup)
{
acquire(&cgtable.lock);
int res = unsafe_disable_pid_controller(cgroup);
release(&cgtable.lock);
return res;
}
int set_cpu_id(struct cgroup * cgroup, int cpuid) {
// If no cgroup found, return error.
if (cgroup == 0)
return -1;
// Set the cpu id if it is within allowed parameters.
// NCPU+1 is used for testing, since this cpu id can never be in the system.
if (cpuid >= 0 && cpuid <= NCPU + 1) {
cgroup->cpu_to_use = cpuid;
return 1;
}
return 0;
}
int unsafe_enable_set_controller(struct cgroup *cgroup) {
// If cgroup has processes in it, controllers can't be enabled.
if (cgroup == 0 || cgroup->populated == 1) {
return -1;
}
// If controller is enabled do nothing.
if (cgroup->set_controller_enabled) {
return 0;
}
if (cgroup->set_controller_avalible) {
// Set cpu set controller to enabled.
cgroup->set_controller_enabled = 1;
// Set cpu set controller to avalible in all child cgroups.
for (int i = 1;
i < sizeof(cgtable.cgroups) / sizeof(cgtable.cgroups[0]);
i++)
if (cgtable.cgroups[i].parent == cgroup)
cgtable.cgroups[i].set_controller_avalible = 1;
}
return 0;
}
int unsafe_disable_set_controller(struct cgroup *cgroup) {
if (cgroup == 0) {
return -1;
}
// If controller is disabled do nothing.
if (cgroup->set_controller_enabled == 0) {
return 0;
}
// Check that all child cgroups have cpu set controller disabled. (cannot
// disable controller when children have it enabled)
for (int i = 1;
i < sizeof(cgtable.cgroups) / sizeof(cgtable.cgroups[0]);
i++)
if (cgtable.cgroups[i].parent == cgroup &&
cgtable.cgroups[i].set_controller_enabled) {
return -1;
}
// Set cpu set controller to disabled.
cgroup->set_controller_enabled = 0;
// Set cpu set controller to unavalible in all child cgroups.
for (int i = 1;
i < sizeof(cgtable.cgroups) / sizeof(cgtable.cgroups[0]);
i++)
if (cgtable.cgroups[i].parent == cgroup)
cgtable.cgroups[i].set_controller_avalible = 0;
return 0;
}
int enable_set_controller(struct cgroup * cgroup)
{
acquire(&cgtable.lock);
int res = unsafe_enable_set_controller(cgroup);
release(&cgtable.lock);
return res;
}
int disable_set_controller(struct cgroup * cgroup)
{
acquire(&cgtable.lock);
int res = unsafe_disable_set_controller(cgroup);
release(&cgtable.lock);
return res;
}
int frz_grp(struct cgroup * cgroup, int frz) {
// If no cgroup found, return error.
if (cgroup == 0)
return -1;
// Freeze/unfreeze cgroup based on input.
if (frz == 1 || frz == 0) {
cgroup->is_frozen = frz;
return 1;
}
return 0;
}
int set_max_mem(struct cgroup* cgroup, unsigned int limit) {
// If no cgroup found, return error.
if (cgroup == 0)
return -1;
// Set the limit if it is within allowed parameters.
// 0 is used for testing.
if (limit >= 0 && limit <= KERNBASE) {
cgroup->max_mem = limit;
return 1;
}
return 0;
}
int unsafe_enable_mem_controller(struct cgroup* cgroup) {
// If cgroup has processes in it, controllers can't be enabled.
if (cgroup == 0 || cgroup->populated == 1) {
return -1;
}
// If controller is enabled do nothing.
if (cgroup->mem_controller_enabled) {
return 0;
}
if (cgroup->mem_controller_avalible) {
// Set memory controller to enabled.
cgroup->mem_controller_enabled = 1;
// Set memory controller to avalible in all child cgroups.
for (int i = 1;
i < sizeof(cgtable.cgroups) / sizeof(cgtable.cgroups[0]);
i++)
if (cgtable.cgroups[i].parent == cgroup)
cgtable.cgroups[i].mem_controller_avalible = 1;
}
return 0;
}
int unsafe_disable_mem_controller(struct cgroup* cgroup) {
if (cgroup == 0) {
return -1;
}
// If controller is disabled do nothing.
if (cgroup->mem_controller_enabled == 0) {
return 0;
}
// Check that all child cgroups have memory controller disabled. (cannot
// disable controller when children have it enabled)
for (int i = 1;
i < sizeof(cgtable.cgroups) / sizeof(cgtable.cgroups[0]);
i++)
if (cgtable.cgroups[i].parent == cgroup &&
cgtable.cgroups[i].mem_controller_enabled) {
return -1;
}
// Set memory controller to disabled.
cgroup->mem_controller_enabled = 0;
// Set memory controller to unavalible in all child cgroups.
for (int i = 1;
i < sizeof(cgtable.cgroups) / sizeof(cgtable.cgroups[0]);
i++)
if (cgtable.cgroups[i].parent == cgroup)
cgtable.cgroups[i].mem_controller_avalible = 0;
return 0;
}
int enable_mem_controller(struct cgroup* cgroup)
{
acquire(&cgtable.lock);
int res = unsafe_enable_mem_controller(cgroup);
release(&cgtable.lock);
return res;
}
int disable_mem_controller(struct cgroup* cgroup)
{
acquire(&cgtable.lock);
int res = unsafe_disable_mem_controller(cgroup);
release(&cgtable.lock);
return res;
}