-
Notifications
You must be signed in to change notification settings - Fork 6
/
model_utils.py
840 lines (684 loc) · 31.8 KB
/
model_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
# This file will contain functions related to the model such as loading the model, SparseLLM pruning, and evaluation.
import torch
import torch.nn as nn
from pruning_utils import *
from quant import *
import math
import copy
from transformers import OPTForCausalLM, LlamaForCausalLM
def get_opt(args):
def skip(*args, **kwargs):
pass
torch.nn.init.kaiming_uniform_ = skip
torch.nn.init.uniform_ = skip
torch.nn.init.normal_ = skip
model = OPTForCausalLM.from_pretrained(args.model, torch_dtype='auto')
model.seqlen = model.config.max_position_embeddings
return model
def get_llama(args):
def skip(*args, **kwargs):
pass
torch.nn.init.kaiming_uniform_ = skip
torch.nn.init.uniform_ = skip
torch.nn.init.normal_ = skip
model = LlamaForCausalLM.from_pretrained(args.model, torch_dtype='auto')
model.seqlen = 2048
return model
@torch.no_grad()
def opt_sparsellm(model, dataloader, dev, args):
print('Starting ...')
use_cache = model.config.use_cache
model.config.use_cache = False
layers = model.model.decoder.layers
model.model.decoder.embed_tokens = model.model.decoder.embed_tokens.to(dev)
model.model.decoder.embed_positions = model.model.decoder.embed_positions.to(dev)
if hasattr(model.model.decoder, 'project_out') and model.model.decoder.project_out:
model.model.decoder.project_out = model.model.decoder.project_out.to(dev)
if hasattr(model.model.decoder, 'project_in') and model.model.decoder.project_in:
model.model.decoder.project_in = model.model.decoder.project_in.to(dev)
layers[0] = layers[0].to(dev)
dtype = next(iter(model.parameters())).dtype
inps = torch.zeros(
(args.nsamples, model.seqlen, model.config.hidden_size), dtype=dtype, device=dev
)
cache = {'i': 0, 'attention_mask': None}
class Catcher(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, inp, **kwargs):
inps[cache['i']] = inp
cache['i'] += 1
cache['attention_mask'] = kwargs['attention_mask']
raise ValueError
layers[0] = Catcher(layers[0])
for batch in dataloader:
try:
model(batch[0].to(dev))
except ValueError:
pass
layers[0] = layers[0].module
layers[0] = layers[0].cpu()
model.model.decoder.embed_tokens = model.model.decoder.embed_tokens.cpu()
model.model.decoder.embed_positions = model.model.decoder.embed_positions.cpu()
if hasattr(model.model.decoder, 'project_out') and model.model.decoder.project_out:
model.model.decoder.project_out = model.model.decoder.project_out.cpu()
if hasattr(model.model.decoder, 'project_in') and model.model.decoder.project_in:
model.model.decoder.project_in = model.model.decoder.project_in.cpu()
torch.cuda.empty_cache()
outs = torch.zeros_like(inps)
attention_mask = cache['attention_mask']
print('Ready.')
for i in range(len(layers)):
layer = layers[i].to(dev)
subset = find_layers(layer)
gpts = {}
for name in subset:
if (not (args.minlayer <= i < args.maxlayer and args.prune_only in name)) == (not args.invert):
continue
gpts[name] = SparseGPT_OPT(subset[name])
if args.wbits < 16:
gpts[name].quantizer = Quantizer()
gpts[name].quantizer.configure(
args.wbits, perchannel=True, sym=False, mse=False
)
def add_batch(name):
def tmp(_, inp, out):
gpts[name].add_batch(inp[0].data, out.data, name)
return tmp
handles = []
for name in gpts:
handles.append(subset[name].register_forward_hook(add_batch(name)))
for j in range(args.nsamples):
outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask)[0]
for h in handles:
h.remove()
target_layer_names = ['fc1', 'fc2']
for name in gpts:
if name not in target_layer_names:
print(i, name)
print('Pruning ...')
# Prune the layer
sparsity = args.sparsity
gpts[name].fasterprune(
sparsity, prunen=args.prunen, prunem=args.prunem, percdamp=args.percdamp, blocksize=args.blocksize
)
gpts[name].free()
# Adjust hyperparameters as needed
alpha = 0.1
beta = 0.1
gamma = 0.1
# Define the number of optimization steps
opt_epochs = 4
# Get the inputs and outputs which are constants here
X_list = gpts['fc1'].batch_inp
Y_list = gpts['fc2'].batch_out
X = torch.stack(X_list, dim=0)
Y = torch.stack(Y_list, dim=0)
# Reshape to 2D
X, Y = X.reshape((-1, X.size(-1))).T, Y.reshape((-1, Y.size(-1))).T
# free memory
X_list, Y_list = None, None
gpts['fc1'].batch_inp.clear()
gpts['fc2'].batch_out.clear()
hidden_z_list = gpts['fc1'].batch_out
z = torch.stack(hidden_z_list, dim=0)
hidden_z_list = None
gpts['fc1'].batch_out.clear()
hidden_p_list = gpts['fc2'].batch_inp
p = torch.stack(hidden_p_list, dim=0)
hidden_p_list = None
gpts['fc2'].batch_inp.clear()
# Initialize auxiliary variables z and p
z = z.reshape((-1, z.size(-1))).T.to(dev)
p = p.reshape((-1, p.size(-1))).T.to(dev)
torch.cuda.empty_cache()
# Pre-compute the pinverse of X and cache it to save computational cost
Xinv = torch.pinverse(X.to(dtype=torch.float32)).half()
for opt_step in range(opt_epochs):
##############
# optimize W
##############
if opt_step > 0: # for the first step, no need for updating W
# Update the weight matrix of fc1
bias = subset['fc1'].bias.unsqueeze(1).expand(-1, z.size(-1))
# Calculate the weight matrix
weight_matrix_1 = torch.matmul(z - bias, Xinv)
# assign the new parameters to gpts class
gpts['fc1'].layer.weight.copy_(weight_matrix_1)
del bias, weight_matrix_1
# Update the weight matrix of fc2
weight_matrix_2 = copy.deepcopy(gpts['fc2'].layer.weight).to(dtype=torch.float32).requires_grad_(True)
bias = subset['fc2'].bias.unsqueeze(1).expand(-1, Y.size(-1))
learning_rate = 0.01
w_epochs = 10
for _ in range(w_epochs):
with torch.enable_grad():
y_pred = torch.matmul(weight_matrix_2, p.to(dtype=torch.float32)) + bias.to(dtype=torch.float32)
loss = (y_pred - Y.to(dtype=torch.float32)).pow(2).mean() # L2 loss
loss.backward()
weight_matrix_2 -= learning_rate * weight_matrix_2.grad
weight_matrix_2.grad.zero_()
weight_matrix_2 = weight_matrix_2.half()
# assign the new parameters to gpts class
gpts['fc2'].layer.weight.copy_(weight_matrix_2)
del bias, weight_matrix_2, y_pred
torch.cuda.empty_cache()
##############
# prune W
##############
# modify gpts[name].H to be our auxiliary variable
if opt_step > 0: # for the first step, no need for updating H
tmp_H = torch.zeros_like(gpts['fc2'].H)
tmp_p = p.T.reshape((args.nsamples, -1, p.size(0)))
tmp_nsamples = 0
for j in range(args.nsamples):
tmp_inp = tmp_p[j].unsqueeze(0)
tmp = tmp_inp.shape[0]
if isinstance(gpts['fc2'].layer, nn.Linear) or isinstance(gpts['fc2'].layer, transformers.Conv1D):
if len(tmp_inp.shape) == 3:
tmp_inp = tmp_inp.reshape((-1, tmp_inp.shape[-1]))
tmp_inp = tmp_inp.t()
tmp_H *= tmp_nsamples / (tmp_nsamples + tmp)
tmp_nsamples += tmp
tmp_inp = math.sqrt(2 / tmp_nsamples) * tmp_inp.float()
tmp_H += tmp_inp.matmul(tmp_inp.t())
gpts['fc2'].H.copy_(tmp_H)
del tmp_H, tmp_p
torch.cuda.empty_cache()
for name in target_layer_names:
print(i, name)
print('Pruning ...')
sparsity = args.sparsity
gpts[name].fasterprune(
sparsity, prunen=args.prunen, prunem=args.prunem, percdamp=args.percdamp, blocksize=args.blocksize
)
##############
# optimize p
##############
# Activation inverse
next_weight = subset['fc2'].weight
m1 = beta * torch.matmul(next_weight.T, next_weight)
m2 = gamma * torch.eye(m1.shape[0], device=m1.device)
av = torch.inverse(m1 + m2).to(dtype=torch.float16)
del m1, m2
torch.cuda.empty_cache()
# Calculate ReLU
layer_nl_output = nn.functional.relu(z)
# Activation formulate
bias = subset['fc2'].bias.unsqueeze(1).expand(-1, Y.size(-1))
m3 = beta * torch.matmul(next_weight.T, Y - bias)
m4 = gamma * layer_nl_output
af = m3 + m4
p = torch.matmul(av, af)
del layer_nl_output, next_weight, av, m3, m4, af, bias
torch.cuda.empty_cache()
##############
# optimize z
##############
w = subset['fc1'].weight
bias = subset['fc1'].bias.unsqueeze(1).expand(-1, z.size(-1))
m = torch.matmul(w, X) + bias
sol1 = (gamma * p + alpha * m) / (gamma + alpha)
sol2 = m
del w, bias
torch.cuda.empty_cache()
z1 = torch.zeros_like(p)
z2 = torch.zeros_like(p)
chunk_size = 500 # Choose an appropriate size based on your memory constraints
# Assuming the first dimension is the one to be chunked
for k in range(0, sol1.size(0), chunk_size):
chunk = slice(k, k + chunk_size)
# Apply the condition and assignment for the chunk
z1_chunk = z1[chunk]
sol1_chunk = sol1[chunk]
z1_chunk[sol1_chunk >= 0.] = sol1_chunk[sol1_chunk >= 0.]
z1[chunk] = z1_chunk
z2_chunk = z2[chunk]
sol2_chunk = sol2[chunk]
z2_chunk[sol2_chunk <= 0.] = sol2_chunk[sol2_chunk <= 0.]
z2[chunk] = z2_chunk
del z1_chunk, z2_chunk, sol1_chunk, sol2_chunk, sol1, sol2
torch.cuda.empty_cache()
for k in range(0, z1.size(0), chunk_size):
chunk = slice(k, k + chunk_size)
# Compute fz_1 and fz_2 for the current chunk
fz_1_chunk = gamma * torch.square(p[chunk] - nn.functional.relu(z1[chunk])) + alpha * torch.square(z1[chunk] - m[chunk])
fz_2_chunk = gamma * torch.square(p[chunk] - nn.functional.relu(z2[chunk])) + alpha * torch.square(z2[chunk] - m[chunk])
# Determine indices for z1 and z2 for the current chunk
index_z1_chunk = fz_1_chunk <= fz_2_chunk
index_z2_chunk = fz_2_chunk < fz_1_chunk
# Update z for the current chunk
z[chunk][index_z1_chunk] = z1[chunk][index_z1_chunk]
z[chunk][index_z2_chunk] = z2[chunk][index_z2_chunk]
# Clear memory if necessary
del fz_1_chunk, fz_2_chunk, index_z1_chunk, index_z2_chunk, z1, z2, m, chunk
torch.cuda.empty_cache()
for name in target_layer_names:
gpts[name].free()
for j in range(args.nsamples):
outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask)[0]
layers[i] = layer.cpu()
del layer
torch.cuda.empty_cache()
inps, outs = outs, inps
model.config.use_cache = use_cache
@torch.no_grad()
def llama_sparsellm(model, dataloader, dev, args):
print("Starting...")
use_cache = model.config.use_cache
model.config.use_cache = False
layers = model.model.layers
model.model.embed_tokens = model.model.embed_tokens.to(dev)
model.model.norm = model.model.norm.to(dev)
layers[0] = layers[0].to(dev)
dtype = next(iter(model.parameters())).dtype
inps = torch.zeros(
(args.nsamples, model.seqlen, model.config.hidden_size), dtype=dtype, device=dev
)
cache = {"i": 0, "attention_mask": None}
class Catcher(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, inp, **kwargs):
inps[cache["i"]] = inp
cache["i"] += 1
cache["attention_mask"] = kwargs["attention_mask"]
raise ValueError
layers[0] = Catcher(layers[0])
for batch in dataloader:
try:
model(batch[0].to(dev))
except ValueError:
pass
layers[0] = layers[0].module
layers[0] = layers[0].cpu()
model.model.embed_tokens = model.model.embed_tokens.cpu()
model.model.norm = model.model.norm.cpu()
torch.cuda.empty_cache()
outs = torch.zeros_like(inps)
attention_mask = cache["attention_mask"]
print("Ready.")
for i in range(len(layers)):
layer = layers[i].to(dev)
full = find_layers(layer)
if args.true_sequential:
sequential = [
["self_attn.k_proj", "self_attn.v_proj", "self_attn.q_proj"],
["self_attn.o_proj"],
["mlp.up_proj", "mlp.gate_proj"],
["mlp.down_proj"],
]
else:
sequential = [list(full.keys())]
for names in sequential:
subset = {n: full[n] for n in names}
gpts = {}
for name in subset:
if (
not (args.minlayer <= i < args.maxlayer and args.prune_only in name)
) == (not args.invert):
continue
gpts[name] = SparseGPT_LlaMA(subset[name])
if args.wbits < 16:
gpts[name].quantizer = Quantizer()
gpts[name].quantizer.configure(
args.wbits, perchannel=True, sym=False, mse=False
)
def add_batch(name):
def tmp(_, inp, out):
gpts[name].add_batch(inp[0].data, out.data, name)
return tmp
handles = []
for name in subset:
handles.append(subset[name].register_forward_hook(add_batch(name)))
for j in range(args.nsamples):
outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask)[0]
for h in handles:
h.remove()
target_layer_names = ["mlp.up_proj", "mlp.gate_proj", "mlp.down_proj"]
for name in subset:
if name not in target_layer_names:
print(i, name)
print("Pruning ...")
sparsity = args.sparsity
gpts[name].fasterprune(
sparsity,
prunen=args.prunen,
prunem=args.prunem,
percdamp=args.percdamp,
blocksize=args.blocksize,
)
gpts[name].free()
# Adjust hyperparameters as needed
alpha = 5.0
beta = 5.0
gamma = 5.0
# Define the number of global pruning epochs
opt_epochs = 8 # This might need to be adjusted
# Get the inputs and outputs which are constants here
X_list = gpts['mlp.up_proj'].batch_inp
Y_list = gpts['mlp.down_proj'].batch_out
X = torch.stack(X_list, dim=0)
Y = torch.stack(Y_list, dim=0)
# Reshape to 2D
X, Y = X.reshape((-1, X.size(-1))).T, Y.reshape((-1, Y.size(-1))).T
# free memory
X_list, Y_list = None, None
gpts['mlp.up_proj'].batch_inp.clear()
gpts['mlp.down_proj'].batch_out.clear()
# Get the hidden variables and their initialization
# z: output of 'mlp.up_proj'
hidden_z_list = gpts['mlp.up_proj'].batch_out
z = torch.stack(hidden_z_list, dim=0)
hidden_z_list = None
gpts['mlp.up_proj'].batch_out.clear()
# p: input of 'mlp.down_proj'
hidden_p_list = gpts['mlp.down_proj'].batch_inp
p = torch.stack(hidden_p_list, dim=0)
hidden_p_list = None
gpts['mlp.down_proj'].batch_inp.clear()
# s: output of 'mlp.gate_proj'
hidden_s_list = gpts['mlp.gate_proj'].batch_out
s = torch.stack(hidden_s_list, dim=0)
hidden_s_list = None
gpts['mlp.gate_proj'].batch_out.clear()
# Reshape auxiliary variables
z = z.reshape((-1, z.size(-1))).T.to(dev)
p = p.reshape((-1, p.size(-1))).T.to(dev)
s = s.reshape((-1, s.size(-1))).T.to(dev)
torch.cuda.empty_cache()
# Pre-compute the pinverse of X and cache it to save computational cost
Xinv = torch.pinverse(X.to(dtype=torch.float32)).half()
# list to store training losses
training_loss = {'Y_p_loss': [], 'p_z_loss': [], 'z_X_loss': [], 'train_loss': []}
for opt_step in range(opt_epochs):
##############
# optimize W
##############
if opt_step > 0: # for the first step, no need for updating W
# Update the weight matrix of mlp.up_project
# Calculate the weight matrix
weight_matrix_1 = torch.matmul(z, Xinv)
# assign the new parameters to gpts class
gpts['mlp.up_proj'].layer.weight.copy_(weight_matrix_1)
del weight_matrix_1
# Update the weight matrix of mlp.down_proj
pinv = torch.pinverse(p.to(dtype=torch.float32)).half()
# Calculate the weight matrix
weight_matrix_2 = torch.matmul(Y, pinv)
# assign the new parameters to gpts class
gpts['mlp.down_proj'].layer.weight.copy_(weight_matrix_2)
del weight_matrix_2, pinv
# Update the weight matrix of mlp.gate_project
# Calculate the weight matrix
weight_matrix_3 = torch.matmul(s, Xinv)
# assign the new parameters to gpts class
gpts['mlp.gate_proj'].layer.weight.copy_(weight_matrix_3)
del weight_matrix_3
torch.cuda.empty_cache()
##############
# prune W
##############
# modify gpts[name].H to be our auxiliary variable
if opt_step > 0: # for the first step, no need for updating H
tmp_H = torch.zeros_like(gpts['mlp.down_proj'].H)
tmp_p = p.T.reshape((args.nsamples, -1, p.size(0)))
tmp_nsamples = 0
for j in range(args.nsamples):
tmp_inp = tmp_p[j].unsqueeze(0)
tmp = tmp_inp.shape[0]
if isinstance(gpts['mlp.down_proj'].layer, nn.Linear) or isinstance(gpts['mlp.down_proj'].layer, transformers.Conv1D):
if len(tmp_inp.shape) == 3:
tmp_inp = tmp_inp.reshape((-1, tmp_inp.shape[-1]))
tmp_inp = tmp_inp.t()
tmp_H *= tmp_nsamples / (tmp_nsamples + tmp)
tmp_nsamples += tmp
tmp_inp = math.sqrt(2 / tmp_nsamples) * tmp_inp.float()
tmp_H += tmp_inp.matmul(tmp_inp.t())
gpts['mlp.down_proj'].H.copy_(tmp_H)
del tmp_H, tmp_p
torch.cuda.empty_cache()
for name in target_layer_names:
print(i, name)
print('Pruning ...')
sparsity = args.sparsity
gpts[name].fasterprune(
sparsity,
prunen=args.prunen,
prunem=args.prunem,
percdamp=args.percdamp,
blocksize=args.blocksize,
)
##############
# optimize p
##############
# Activation inverse
next_weight = subset['mlp.down_proj'].weight
m1 = beta * torch.matmul(next_weight.T, next_weight)
m2 = gamma * torch.eye(m1.shape[0], device=m1.device)
av = torch.inverse(m1 + m2).to(dtype=torch.float16)
del m1, m2
torch.cuda.empty_cache()
# Calculate SwiGLU output
layer_nl_output = nn.functional.silu(s) * z
# Activation formulate
m3 = beta * torch.matmul(next_weight.T, Y)
m4 = gamma * layer_nl_output
af = m3 + m4
p = torch.matmul(av, af)
del layer_nl_output, next_weight, av, m3, m4, af
torch.cuda.empty_cache()
##############
# optimize z
##############
w = subset['mlp.up_proj'].weight
m = torch.matmul(w, X)
swish = nn.functional.silu(s)
z = (m + swish * p) / (swish ** 2 + 1)
del w, m, swish
torch.cuda.empty_cache()
##############
# optimize s
##############
w = subset['mlp.gate_proj'].weight
# convert the layer's weight tensor to float32 and enable grad
w = w.to(dtype=torch.float32).requires_grad_(True)
s_update_epochs = 2
s_learning_rate = 0.01
for _ in range(s_update_epochs):
batch_size = 1000 # Choose an appropriate batch size based on your memory constraints
# s: [hidden_d, n_samples]
for k in range(0, s.size(-1), batch_size):
chunk = slice(k, k + batch_size)
# get the "mini-batch" for each tensor and turn on autograd
X_batch = X[:,chunk].to(dtype=torch.float32).requires_grad_(True)
z_batch = z[:,chunk].to(dtype=torch.float32).requires_grad_(True)
p_batch = p[:,chunk].to(dtype=torch.float32).requires_grad_(True)
s_batch = s[:,chunk].to(dtype=torch.float32).requires_grad_(True)
with torch.enable_grad(): # temporarily turn on the Pytorch computational graph functionality
loss_s = alpha * torch.norm(s_batch - torch.matmul(w, X_batch))**2
loss_s += gamma * torch.norm(p_batch - nn.functional.silu(s_batch) * z_batch)**2
loss_s.backward()
s_batch -= s_learning_rate * s_batch.grad
s_batch.grad.zero_()
s[:,chunk] = s_batch.detach().to(dtype=torch.float16)
s_batch, X_batch, z_batch, p_batch, w = s_batch.detach(), X_batch.detach(), z_batch.detach(), p_batch.detach(), w.detach()
del w, loss_s, s_batch, X_batch, z_batch, p_batch
torch.cuda.empty_cache()
# compute and save the training loss after each epoch
tmp_training_loss = nn.functional.mse_loss(torch.matmul(subset['mlp.down_proj'].weight,
nn.functional.silu(torch.matmul(subset['mlp.gate_proj'].weight, X))
* torch.matmul(subset['mlp.up_proj'].weight, X)), Y)
training_loss['train_loss'].append(tmp_training_loss.item())
for j in range(args.nsamples):
outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask)[0]
layers[i] = layer.cpu()
del layer
del gpts
torch.cuda.empty_cache()
inps, outs = outs, inps
model.config.use_cache = use_cache
@torch.no_grad()
def opt_eval(model, testenc, dev, args, dataset: str):
print('Evaluating ...')
testenc = testenc.input_ids
nsamples = testenc.numel() // model.seqlen
use_cache = model.config.use_cache
model.config.use_cache = False
layers = model.model.decoder.layers
model.model.decoder.embed_tokens = model.model.decoder.embed_tokens.to(dev)
model.model.decoder.embed_positions = model.model.decoder.embed_positions.to(dev)
if hasattr(model.model.decoder, 'project_out') and model.model.decoder.project_out:
model.model.decoder.project_out = model.model.decoder.project_out.to(dev)
if hasattr(model.model.decoder, 'project_in') and model.model.decoder.project_in:
model.model.decoder.project_in = model.model.decoder.project_in.to(dev)
layers[0] = layers[0].to(dev)
dtype = next(iter(model.parameters())).dtype
inps = torch.zeros(
(nsamples, model.seqlen, model.config.hidden_size), dtype=dtype, device=dev
)
cache = {'i': 0, 'attention_mask': None}
class Catcher(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, inp, **kwargs):
inps[cache['i']] = inp
cache['i'] += 1
cache['attention_mask'] = kwargs['attention_mask']
raise ValueError
layers[0] = Catcher(layers[0])
for i in range(nsamples):
batch = testenc[:, (i * model.seqlen):((i + 1) * model.seqlen)].to(dev)
try:
model(batch)
except ValueError:
pass
layers[0] = layers[0].module
layers[0] = layers[0].cpu()
model.model.decoder.embed_tokens = model.model.decoder.embed_tokens.cpu()
model.model.decoder.embed_positions = model.model.decoder.embed_positions.cpu()
if hasattr(model.model.decoder, 'project_out') and model.model.decoder.project_out:
model.model.decoder.project_out = model.model.decoder.project_out.cpu()
if hasattr(model.model.decoder, 'project_in') and model.model.decoder.project_in:
model.model.decoder.project_in = model.model.decoder.project_in.cpu()
torch.cuda.empty_cache()
outs = torch.zeros_like(inps)
attention_mask = cache['attention_mask']
for i in range(len(layers)):
print(i)
layer = layers[i].to(dev)
if args.gmp:
subset = find_layers(layer)
for name in subset:
W = subset[name].weight.data
thresh = torch.sort(torch.abs(W.flatten()))[0][int(W.numel() * args.sparsity)]
W.data[torch.abs(W.data) <= thresh] = 0
for j in range(nsamples):
outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask)[0]
layers[i] = layer.cpu()
del layer
torch.cuda.empty_cache()
inps, outs = outs, inps
if model.model.decoder.final_layer_norm is not None:
model.model.decoder.final_layer_norm = model.model.decoder.final_layer_norm.to(dev)
if model.model.decoder.project_out is not None:
model.model.decoder.project_out = model.model.decoder.project_out.to(dev)
model.lm_head = model.lm_head.to(dev)
testenc = testenc.to(dev)
nlls = []
for i in range(nsamples):
hidden_states = inps[i].unsqueeze(0)
if model.model.decoder.final_layer_norm is not None:
hidden_states = model.model.decoder.final_layer_norm(hidden_states)
if model.model.decoder.project_out is not None:
hidden_states = model.model.decoder.project_out(hidden_states)
lm_logits = model.lm_head(hidden_states)
shift_logits = lm_logits[:, :-1, :].contiguous()
shift_labels = testenc[
:, (i * model.seqlen):((i + 1) * model.seqlen)
][:, 1:]
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
neg_log_likelihood = loss.float() * model.seqlen
nlls.append(neg_log_likelihood)
ppl = torch.exp(torch.stack(nlls).sum() / (nsamples * model.seqlen))
print(f"Perplexity: {ppl.item():3f}")
model.config.use_cache = use_cache
@torch.no_grad()
def llama_eval(model, testenc, dev, args, dataset: str):
print("Evaluating ...")
testenc = testenc.input_ids
nsamples = testenc.numel() // model.seqlen
use_cache = model.config.use_cache
model.config.use_cache = False
layers = model.model.layers
model.model.embed_tokens = model.model.embed_tokens.to(dev)
layers[0] = layers[0].to(dev)
dtype = next(iter(model.parameters())).dtype
inps = torch.zeros(
(nsamples, model.seqlen, model.config.hidden_size), dtype=dtype, device=dev
)
cache = {"i": 0, "attention_mask": None}
class Catcher(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, inp, **kwargs):
inps[cache["i"]] = inp
cache["i"] += 1
cache["attention_mask"] = kwargs["attention_mask"]
raise ValueError
layers[0] = Catcher(layers[0])
for i in range(nsamples):
batch = testenc[:, (i * model.seqlen) : ((i + 1) * model.seqlen)].to(dev)
try:
model(batch)
except ValueError:
pass
layers[0] = layers[0].module
layers[0] = layers[0].cpu()
model.model.embed_tokens = model.model.embed_tokens.cpu()
torch.cuda.empty_cache()
outs = torch.zeros_like(inps)
attention_mask = cache["attention_mask"]
for i in range(len(layers)):
print(i)
layer = layers[i].to(dev)
if args.gmp:
subset = find_layers(layer)
for name in subset:
W = subset[name].weight.data
thresh = torch.sort(torch.abs(W.flatten()))[0][
int(W.numel() * args.sparsity)
]
W.data[torch.abs(W.data) <= thresh] = 0
for j in range(nsamples):
outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask)[0]
layers[i] = layer.cpu()
del layer
torch.cuda.empty_cache()
inps, outs = outs, inps
if model.model.norm is not None:
model.model.norm = model.model.norm.to(dev)
model.lm_head = model.lm_head.to(dev)
testenc = testenc.to(dev)
nlls = []
for i in range(nsamples):
hidden_states = inps[i].unsqueeze(0)
if model.model.norm is not None:
hidden_states = model.model.norm(hidden_states)
lm_logits = model.lm_head(hidden_states)
shift_logits = lm_logits[:, :-1, :].contiguous()
shift_labels = testenc[:, (i * model.seqlen) : ((i + 1) * model.seqlen)][:, 1:]
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
)
neg_log_likelihood = loss.float() * model.seqlen
nlls.append(neg_log_likelihood)
ppl = torch.exp(torch.stack(nlls).sum() / (nsamples * model.seqlen))
print(f"Perplexity: {ppl.item():3f}")
model.config.use_cache = use_cache