Skip to content

Commit 09d3ce5

Browse files
committed
first commit
1 parent 41ed957 commit 09d3ce5

14 files changed

+2233
-6
lines changed

README.md

+25-3
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,31 @@
1-
# Project Name
1+
# GramViT
22

3-
## Contents
3+
The repo contains the trained model and code for the paper, [A Novel Framework for the Automated Characterization of Gram Stained Blood Culture Slides Using a Large Scale Vision Transformer](https://pages.github.com/). GramViT is a region-sampling framework for characterizing Gram-stained slides using Microsoft's LongViT vision Transformer model.
4+
5+
Our model was trained to characterize five common categories of Gram-stained WSIs: Gram-positive cocci in clusters, Gram-positive cocci in pairs/chains, Gram-positive rods, Gram-negative rods, and slides with no bacteria. It was trained using a 475-slide dataset of blood culture Gram-stained slides collected at Dartmouth Hitchcock Medical Center (Lebanon, New Hampshire, USA).
6+
7+
![Model figure](GramViT/figures/gramvit.png)
48

59
## Dependencies
610

11+
See requirements.txt
12+
713
## Usage
814

9-
## Citations
15+
In order to use this repository, you need to create a cvs file for your dataset containing dataset metadata and file paths.
16+
17+
1: Extract regions from each svs file
18+
19+
python preprocessing/1_get_regions.py --csv_file_path --output_folder --region_size
20+
21+
2: Build Dataset Index
22+
23+
python preprocessing/2_create_index.py --index_path --pickle_split_path --total_fold
24+
25+
3: Train Model
26+
27+
bash code/launch_finetuning_gs.py
28+
29+
4: Evaluate Model
30+
31+
bash code/launch_evaluate_gs_finetune.py

0 commit comments

Comments
 (0)