forked from emre1925/HybridCode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparameters.py
38 lines (32 loc) · 2.23 KB
/
parameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import argparse
def args_parser():
parser = argparse.ArgumentParser()
# Sequence arguments
parser.add_argument('--snr', type=float, default= 1, help="Transmission SNR")
parser.add_argument('--K', type=int, default=51, help="Sequence length")
parser.add_argument('--block_size', type=int, default=3, help="Block size")
parser.add_argument('--numb_block', type=int, default=17, help="Number of blocks")
parser.add_argument('--parity_pb', type=int, default=9, help=" Total number of parity bits per block")
parser.add_argument('--seq_reloc', type=int, default=1)
parser.add_argument('--memory', type=int, default=51)
parser.add_argument('--core', type=int, default=1)
# Transformer arguments
parser.add_argument('--heads_trx', type=int, default=1, help="number of heads for the multi-head attention")
parser.add_argument('--d_k_trx', type=int, default=32, help="number of features for each head")
parser.add_argument('--N_trx', type=int, default=2, help=" number of layers in the encoder and decoder")
parser.add_argument('--dropout', type=float, default=0.0, help="prob of dropout")
parser.add_argument('--custom_attn', type=bool, default = True, help= "use custom attention")
# Learning arguments
parser.add_argument('--load_weights') # None
parser.add_argument('--train', type=int, default= 1)
parser.add_argument('--reloc', type=int, default=1, help="w/ or w/o power rellocation")
parser.add_argument('--totalbatch', type=int, default=100, help="number of total batches to train; scale it with 1k")
parser.add_argument('--batchSize', type=int, default=4096, help="batch size")
parser.add_argument('--opt_method', type=str, default='adamW', help="Optimization method adamW,lamb,adam")
parser.add_argument('--clip_th', type=float, default=0.5, help="clipping threshold")
parser.add_argument('--use_lr_schedule', type=bool, default = True, help="lr scheduling")
parser.add_argument('--multclass', type=bool, default = True, help="bit-wise or class-wise training")
parser.add_argument('--lr', type=float, default=0.001, help="learning rate")
parser.add_argument('--wd', type=float, default=0.01, help="weight decay")
args = parser.parse_args()
return args