forked from emre1925/HybridCode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
344 lines (288 loc) · 17.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import torch, time, pdb, os, random
import numpy as np
import torch.nn as nn
from utils import *
from nn_layers import *
from parameters import *
import numpy as np
##################### Author @Emre Ozfatura #####################################
#### Import code headers ###
## TO DO: Include in the main script
header_fn = "Headers/BCH_63_45_3_strip.alist"
decoding_iterations = 30
code = LDPC(header_fn, decoding_iterations, args.device)
# codelength
n = code.n
# dimension
k = code.k
# coderate
coderate = float(k/n)
# How to encode
encoded = code.encode(message_bits)
# Convert Probs to LLRs
LLRs = LLR_convertion(probs, n)
# How to decode (2 outputs, binary decoded and soft output LLRs)
decoded_bits, soft_outputs = code.decode(LLRs)
#####################Neurol Encoder-Decoder no feedback
################################## Distributed training approach #######################################################
def ModelAvg(w):
w_avg = copy.deepcopy(w[0])
for k in w_avg.keys():
for i in range(1, len(w)):
w_avg[k] += w[i][k]
w_avg[k] = torch.div(w_avg[k], len(w))
return w_avg
################################ Prepare optimizer ######################################################################
########################## This is the overall AutoEncoder model ########################
class AE(nn.Module):
def __init__(self, args):
super(AE, self).__init__()
self.ind1 = [0,4,8,12,16,20]
self.ind2 = [22,18,14,10,6,2]
self.args = args
################## We use learnable positional encoder which can be removed later ######################################
self.pe = PositionalEncoder_fixed()
########################################################################################################################
self.Tmodel = BERT('trx', 2**args.block_size, args.block_size, args.d_model_trx, args.N_trx, args.heads_trx, args.dropout, args.parity_pb, args.custom_attn,args.multclass)
# mod, input_size, block_size, d_model, N, heads, dropout, outsize, custom_attn=True, multclass = False
self.Rmodel = BERT('rec', args.parity_pb, args.block_size, args.d_model_trx, args.N_trx+1, args.heads_trx, args.dropout, 2**args.block_size ,args.custom_attn,args.multclass)
self.Rmodelf = BERT('rec2', args.parity_pb + args.block_size, args.block_size, args.d_model_trx, args.N_trx+1, args.heads_trx, args.dropout, 2**args.block_size ,args.custom_attn,args.multclass)
########## Power Reallocation as in deepcode work ###############
if self.args.reloc == 1:
self.total_power_reloc = Power_reallocate(args)
def power_constraint(self, inputs): # Normalize through batch dimension
this_mean = torch.mean(inputs, dim=0)
this_std = torch.std(inputs, dim=0)
outputs = (inputs - this_mean)*1.0/this_std
return outputs
########### IMPORTANT ##################
# We use modulated bits at encoder
#######################################
def forward(self, bVec, fwd_noise_par, table, isTraining = 1):
###############################################################################################################################################################
############# Generate the output ###################################################
output = self.Tmodel(bVec, None, self.pe)
parity = self.power_constraint(output)
received = parity + fwd_noise_par
# ------------------------------------------------------------ receiver
decSeq = self.Rmodel(received, None, self.pe) # Decode the sequence
belief = torch.matmul(decSeq, table)
############################# consensus with repetiton code ########################
belief_revised = (belief[:,0,:].unsqueeze(dim=1) + (1-belief[:,22,:].unsqueeze(dim=1)))/2
for i in range (1,23):
if np.mod(i, 4) == 0:
belief_revised = torch.cat([belief_revised, (belief[:,i,:].unsqueeze(dim=1) + (1-belief[:,22-i,:].unsqueeze(dim=1)))/2],dim=1)
elif np.mod(i, 4) == 2:
belief_revised = torch.cat([belief_revised, 1-((belief[:,22-i,:].unsqueeze(dim=1) + (1-belief[:,i,:].unsqueeze(dim=1)))/2)],dim=1)
else:
belief_revised = torch.cat([belief_revised, belief[:,i,:].unsqueeze(dim=1)],dim=1)
received_prior = torch.cat([received,belief],dim=2)
################ Repeat the process 1 ##################################################
decSeq = self.Rmodelf(received_prior, None, self.pe) # Decode the sequence
belief = torch.matmul(decSeq, table)
############################# consensus with repetiton code ########################
belief_revised = (belief[:,0,:].unsqueeze(dim=1) + (1-belief[:,22,:].unsqueeze(dim=1)))/2
for i in range (1,23):
if np.mod(i, 4) == 0:
belief_revised = torch.cat([belief_revised, (belief[:,i,:].unsqueeze(dim=1) + (1-belief[:,22-i,:].unsqueeze(dim=1)))/2],dim=1)
elif np.mod(i, 4) == 2:
belief_revised = torch.cat([belief_revised, 1-((belief[:,22-i,:].unsqueeze(dim=1) + (1-belief[:,i,:].unsqueeze(dim=1)))/2)],dim=1)
else:
belief_revised = torch.cat([belief_revised, belief[:,i,:].unsqueeze(dim=1)],dim=1)
received_prior = torch.cat([received,belief],dim=2)
################ Repeat the process 2 ##################################################
decSeq = self.Rmodelf(received_prior, None, self.pe) # Decode the sequence
belief = torch.matmul(decSeq, table)
############################# consensus with repetiton code ########################
belief_revised = (belief[:,0,:].unsqueeze(dim=1) + (1-belief[:,22,:].unsqueeze(dim=1)))/2
for i in range (1,23):
if np.mod(i, 4) == 0:
belief_revised = torch.cat([belief_revised, (belief[:,i,:].unsqueeze(dim=1) + (1-belief[:,22-i,:].unsqueeze(dim=1)))/2],dim=1)
elif np.mod(i, 4) == 2:
belief_revised = torch.cat([belief_revised, 1-((belief[:,22-i,:].unsqueeze(dim=1) + (1-belief[:,i,:].unsqueeze(dim=1)))/2)],dim=1)
else:
belief_revised = torch.cat([belief_revised, belief[:,i,:].unsqueeze(dim=1)],dim=1)
received_prior = torch.cat([received,belief],dim=2)
################ Final ################
decSeqf = self.Rmodelf(received_prior, None, self.pe) # Decode the sequence
prediction = F.softmax(decSeqf, dim=-1)
return prediction
############################################################################################################################################################################
def train_model(model, args):
print("-->-->-->-->-->-->-->-->-->--> start training ...")
model.train()
start = time.time()
epoch_loss_record = []
flag = 0
if args.block_size == 3:
map_vec = torch.tensor([1,2,4])# maping block of bits to class label
else:
map_vec = torch.tensor([1,2])# maping block of bits to class label
# in each run, randomly sample a batch of data from the training dataset
################################### Vector embedding ###################################
A_blocks = torch.tensor([[0,0,0], [0,0,1],[0,1,0],[0,1,1],[1,0,0],[1,0,1],[1,1,0],[1,1,1]],requires_grad=False).float()
################################### Distance based vector embedding ####################
Embed = torch.zeros(8,args.batchSize, args.numb_block+6, 8)
refind=[15,12,9,6,3,0]
for i in range(8):
embed = torch.zeros(8)
for j in range(8):
embed[j] = torch.sum(torch.abs(A_blocks[i,:]-A_blocks[j,:]))
Embed[i,:,:,:]= embed.repeat(args.batchSize, args.numb_block+6, 1)
###########################################################################################################
numBatch = (1000 * args.totalbatch) + 1 # Total number of batches
for eachbatch in range(numBatch):
############################## Here we directy generate symbols ###################################
bVec = torch.randint(0, 8, (args.batchSize, args.numb_block, 1),requires_grad=False)
bVec_ref = bVec[:,refind,:]
bVec_ref_inv = 7-bVec_ref
############################## This part is inverse repetition code #######################################
bVec_hyb = torch.zeros((args.batchSize, args.numb_block+6,1),requires_grad=False) # generated data in terms of distance embeddings
for i in range (6):
if i==5:
bVec_hyb[:,i*4:i*4+1,:] = bVec[:,i*3:i*3+1,:]
bVec_hyb[:,i*4+2,:] = bVec_ref_inv[:,i,:]
else:
bVec_hyb[:,i*4:i*4+1,:] = bVec[:,i*3:i*3+1,:]
bVec_hyb[:,i*4+2,:] = bVec_ref_inv[:,i,:]
bVec_hyb[:,i*4+3,:] = bVec[:,i*3+3,:]
############################## Generated data in the form of vector embeddings #################################
bVecr = torch.zeros((args.batchSize, args.numb_block+6,8), requires_grad=False) # generated data in terms of distance embeddings
for i in range(8):
mask = (bVec_hyb == i).long()
bVecr= bVecr + (mask * Embed[i,:,:,:])
#################################### Generate noise sequence ##################################################
###############################################################################################################
###############################################################################################################
################################### Curriculum learning strategy ##############################################
if eachbatch < args.core * 80000:
snr=4* (1-eachbatch/(args.core * 80000))+ (eachbatch/(args.core * 80000)) * args.snr
else:
snr=args.snr
################################################################################################################
stdn = 10 ** (-snr * 1.0 / 10 / 2) #forward snr
# Noise values for the parity bits
fwd_noise_par = torch.normal(0, std=stdn, size=(args.batchSize, args.numb_block+6, args.parity_pb), requires_grad=False)
############## feed into model to get predictions##########################
preds = model(bVecr.to(args.device), fwd_noise_par.to(args.device), A_blocks.to(args.device), isTraining=1)
############## Optimization ###############################################
args.optimizer.zero_grad()
################################ loss #############################
ys = bVec_hyb.long().contiguous().view(-1)
preds = preds.contiguous().view(-1, preds.size(-1))
preds = torch.log(preds)
loss = F.nll_loss(preds, ys.to(args.device))########################## This should be binary cross-entropy loss
loss.backward()
####################### Gradient Clipping optional ###########################
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_th)
############################ Schedule the learning rate ##################################################
args.optimizer.step()
if args.use_lr_schedule:
args.scheduler.step()
#############################################################################
################################ Observe test accuracy##############################
with torch.no_grad():
probs, decodeds = preds.max(dim=1)
succRate = sum(decodeds == ys.to(args.device)) / len(ys)
print('NoFB_nc','Idx,lr,BS,loss,BER,num=', (
eachbatch, args.lr, args.batchSize, round(loss.item(), 5), round(1 - succRate.item(), 6),
sum(decodeds != ys.to(args.device)).item()))
####################################################################################
if np.mod(eachbatch, 10000) == 0:
epoch_loss_record.append(loss.item())
if not os.path.exists('weights'):
os.mkdir('weights')
saveDir = 'weights/model_weights' + str(eachbatch)
torch.save(model.state_dict(), saveDir)
def EvaluateNets(model, args):
checkpoint = torch.load(args.saveDir)
# # ======================================================= load weights
model.load_state_dict(checkpoint)
model.eval()
################################### Vector embedding ###################################
A_blocks = torch.tensor([[0,0,0], [0,0,1],[0,1,0],[0,1,1],[1,0,0],[1,0,1],[1,1,0],[1,1,1]],requires_grad=False).float()
################################### Distance based vector embedding ####################
Embed = torch.zeros(8,args.batchSize, args.numb_block+6, 8)
refind=[15,12,9,6,3,0]
for i in range(8):
embed = torch.zeros(8)
for j in range(8):
embed[j] = torch.sum(torch.abs(A_blocks[i,:]-A_blocks[j,:]))
Embed[i,:,:,:]= embed.repeat(args.batchSize, args.numb_block+6, 1)
args.numTestbatch = 100000
# failbits = torch.zeros(args.K).to(args.device)
bitErrors = 0
pktErrors = 0
for eachbatch in range(args.numTestbatch):
bVec = torch.randint(0, 8, (args.batchSize, args.numb_block, 1),requires_grad=False)
bVec_ref = bVec[:,refind,:]
bVec_ref_inv = 7-bVec_ref
############################## This part is inverse repetition code #######################################
bVec_hyb = torch.zeros((args.batchSize, args.numb_block+6,1),requires_grad=False) # generated data in terms of distance embeddings
for i in range (6):
if i==5:
bVec_hyb[:,i*4:i*4+1,:] = bVec[:,i*3:i*3+1,:]
bVec_hyb[:,i*4+2,:] = bVec_ref_inv[:,i,:]
else:
bVec_hyb[:,i*4:i*4+1,:] = bVec[:,i*3:i*3+1,:]
bVec_hyb[:,i*4+2,:] = bVec_ref_inv[:,i,:]
bVec_hyb[:,i*4+3,:] = bVec[:,i*3+3,:]
############################## Generated data in the form of vector embeddings #################################
bVecr = torch.zeros((args.batchSize, args.numb_block+6,8), requires_grad=False) # generated data in terms of distance embeddings
for i in range(8):
mask = (bVec_hyb == i).long()
bVecr= bVecr + (mask * Embed[i,:,:,:])
stdn = 10 ** (-args.snr * 1.0 / 10 / 2) #forward snr
# Noise values for the parity bits
fwd_noise_par = torch.normal(0, std=stdn, size=(args.batchSize, args.numb_block+6, args.parity_pb), requires_grad=False)
# feed into model to get predictions
with torch.no_grad():
preds = model(bVecr.to(args.device), fwd_noise_par.to(args.device), A_blocks.to(args.device),isTraining=0)
preds1 = preds.contiguous().view(-1, preds.size(-1))
ys = bVec_hyb.contiguous().view(-1)
probs, decodeds = preds1.max(dim=1)
decisions = decodeds != ys.to(args.device)
bitErrors += decisions.sum()
BER = bitErrors / (eachbatch + 1) / args.batchSize / (args.K+18)
pktErrors += decisions.view(args.batchSize, 23).sum(1).count_nonzero()
PER = pktErrors / (eachbatch + 1) / args.batchSize
print('num, BER, errors, PER, errors = ', eachbatch, round(BER.item(), 10), bitErrors.item(),
round(PER.item(), 10), pktErrors.item(), )
BER = bitErrors.cpu() / (args.numTestbatch * args.batchSize * args.K)
PER = pktErrors.cpu() / (args.numTestbatch * args.batchSize)
print(BER)
print("Final test BER = ", torch.mean(BER).item())
pdb.set_trace()
if __name__ == '__main__':
# ======================================================= parse args
args = args_parser()
args.device = 'cuda:2' if torch.cuda.is_available() else 'cpu'
########### path for saving model checkpoints ################################
args.saveDir = 'weights/model_weights100000' # path to be saved to
################## Model size part ###########################################
args.d_model_trx = args.heads_trx * args.d_k_trx # total number of features
##############################################################################
args.total_iter = 101000
# ======================================================= Initialize the model
model = AE(args).to(args.device)
if args.device == 'cuda':
model = torch.nn.DataParallel(model)
torch.backends.cudnn.benchmark = True
# ======================================================= run
if args.train == 1:
if args.opt_method == 'adamW':
args.optimizer = torch.optim.AdamW(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=args.wd, amsgrad=False)
elif args.opt_method == 'lamb':
args.optimizer = optim.Lamb(model.parameters(),lr= 1e-2, betas=(0.9, 0.999), eps=1e-8, weight_decay=args.wd)
else:
args.optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.98), eps=1e-9)
if args.use_lr_schedule:
lambda1 = lambda epoch: (1-epoch/args.total_iter)
args.scheduler = torch.optim.lr_scheduler.LambdaLR(args.optimizer, lr_lambda=lambda1)
if 0:
checkpoint = torch.load(args.saveDir)
model.load_state_dict(checkpoint)
print("================================ Successfully load the pretrained data!")
train_model(model, args)
else:
EvaluateNets(model, args)