-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtrain.py
97 lines (94 loc) · 3.91 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import os, sys
import ysg_treelstm
root = os.path.abspath(os.path.dirname(__file__))
sys.path.append(root)
from datahelper import DataHelper
from config import parse_args
import torch
import utils
from model import SimilarityTreeLSTM
import torch.nn as nn
import numpy as np
from metrics import Metrics
import torch.optim as optim
from sklearn.metrics import auc, roc_curve
from utils import Trainer
import logging
import json
logger = logging.getLogger("train.py")
logger.addHandler(logging.StreamHandler())
logger.addHandler(logging.FileHandler("T_train.log"))
logger.setLevel(logging.INFO)
os.environ['CUDA_VISIBLE_DEVICES'] = '0' #
args = parse_args()
dataset = torch.load(os.path.join(root, "./data/train_dataset_buildroot_demo.pth"))
all = len(dataset)
np.random.shuffle(dataset)
proportion = 0.8 #
split_idx = int(all * proportion)
train_dataset, test_dataset = dataset[0:split_idx], dataset[split_idx:]
logger.info("==> Size of train data \t : %d" % len(train_dataset))
logger.info("==> Size of test data \t : %d" % len(test_dataset))
args.cuda = args.cuda and torch.cuda.is_available()
device = torch.device("cuda:0" if args.cuda else "cpu")
model = SimilarityTreeLSTM(
args.vocab_size,
args.input_dim,
args.mem_dim,
args.hidden_dim,
args.num_classes,
device
)
criterion = nn.BCELoss()
logger.info("[CUDA] available " + str(args.cuda))
logger.info("args" + str(args))
if args.optim == 'adam':
optimizer = optim.Adam(filter(lambda p: p.requires_grad,
model.parameters()), lr=args.lr, weight_decay=args.wd)
elif args.optim == 'adagrad':
optimizer = optim.Adagrad(filter(lambda p: p.requires_grad,
model.parameters()), lr=args.lr, weight_decay=args.wd)
elif args.optim == 'sgd':
optimizer = optim.SGD(filter(lambda p: p.requires_grad,
model.parameters()), lr=args.lr, weight_decay=args.wd)
model.to(device), criterion.to(device)
trainer = Trainer(args, model, criterion, optimizer, device)
best = - float("inf")
metrics = Metrics(8)
for epoch in range(args.epochs):
train_loss = trainer.train(train_dataset)
train_loss, train_pred = trainer.test(train_dataset)
test_loss, test_preds = trainer.test(test_dataset)
train_pred = train_pred[:, 1]
test_preds = test_preds[:, 1]
train_labels = utils.get_labels(train_dataset).squeeze(1)
train_targets = utils.map_labels_to_targets(train_labels, args.num_classes)
train_mse = metrics.mse(train_pred, train_labels)
acc = metrics.accuracy(train_pred, train_labels) # label!!!
fpr, tpr, threshold = roc_curve(train_labels, train_pred)
train_auc = auc(fpr, tpr)
logger.info("==> Epoch {}, Train \t Loss: {}\t Auc: {}\tMSE{} \t Accuracy{}".format(
epoch, train_loss, train_auc, train_mse, acc
))
test_lables = utils.get_labels(test_dataset).squeeze(1)
test_targets = utils.map_labels_to_targets(test_lables, args.num_classes)
test_mse = metrics.mse(test_preds, test_lables)
test_acc = metrics.accuracy(test_preds, test_lables)
fpr, tpr, t = roc_curve(test_lables, test_preds)
test_auc = auc(fpr, tpr)
logger.info("==> Epoch {}, Test \t Loss: {}\tAuc: {}\tMSE{} \t Accuracy{} \t".format(
epoch, test_loss, test_auc, test_mse, test_acc
))
if best < test_auc:
best = test_auc
checkpoint = {
'model': trainer.model.state_dict(),
'optim': trainer.optimizer,
'auc': test_auc, 'mse': test_mse,
"args": args, 'epoch': epoch
}
logger.warning("==> New optimum found, checkpoint everything now...")
logger.info("auc is %f" % test_auc)
logger.info("fpr=%s" % json.dumps(fpr.tolist()))
logger.info("tpr=%s" % json.dumps(tpr.tolist()))
torch.save(checkpoint, "%s.pt" % (os.path.join(args.save, args.expname)))