-
Notifications
You must be signed in to change notification settings - Fork 697
/
Primitive Root.cpp
64 lines (58 loc) · 1002 Bytes
/
Primitive Root.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
// g is O(log^6 n).
// Run Time of algorithm is O(ans * log phi(n) * log n), which is approximately O(log^8 n).
int pow(int a, int b, int m)
{
int ans=1;
while(b)
{
if(b&1)
ans=(1LL*ans*a)%m;
b/=2;
a=(1LL*a*a)%m;
}
return ans;
}
int totient(int n)
{
int ans=n;
for(int i=2;i*i<=n;i++)
{
if(n%i==0)
{
while(n%i==0)
n/=i;
ans-=n/i;
}
}
if(n>1)
ans-=ans/n;
return ans;
}
//Primitive root only exists if X=1, 4, Prime, (Odd Prime)^k, 2*(Odd Prime)^K
int getPrimitive(int x) //Returns -1 if there is no primitive root
{
vector<int> factors;
int phi=totient(x);
int n=phi;
for(int i=2;i*i<=n;i++)
{
if(n%i==0)
{
factors.push_back(i);
while(n%i==0)
n/=i;
}
}
if(n>1)
factors.push_back(n);
for(int prim=2;prim<=x;prim++)
{
bool check=true;
for(int i=0;i<factors.size()&✓i++)
check&=(pow(prim, phi/factors[i], x)!=1);
if(check)
return prim;
}
return -1;
}
//Source: https://cp-algorithms.com/algebra/primitive-root.html