We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
一、问题现象:
import time from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import GenerationConfig import numpy as np import torch import torch_npu device = "npu:4" # the device to load the model onto model_dir = "models/qwen/Qwen1___5-7B-Chat" model = AutoModelForCausalLM.from_pretrained( model_dir, device_map=device, torch_dtype=torch.float16, #bf16 = True, trust_remote_code=True,x`` ).eval() tokenizer = AutoTokenizer.from_pretrained(model_dir,trust_remote_code=True) #@torch.inference_mode() def infer(model, tokenizer, prompt): #prompt = "帮助我制定一份去上海的旅游攻略。" messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) start = time.time() generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512, do_sample = False, use_cache = True, ) end = time.time() generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] print(f"{len(generated_ids)/(end-start)}tokens/s") response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return response
通过上面代码调用模型推理时ai core占用为0,推理速度慢
二、软件版本: -- CANN 版本: 8.0RC1 --Pytorch版本:2.1.0 --torch-npu版本:2.1.0.post3 --Python 版本:3.9.14 --Transformers: 4.38.2
The text was updated successfully, but these errors were encountered:
https://gitee.com/ascend/pytorch/issues/IAGSVZ?from=project-issue
Sorry, something went wrong.
No branches or pull requests
一、问题现象:
通过上面代码调用模型推理时ai core占用为0,推理速度慢
二、软件版本:
-- CANN 版本: 8.0RC1
--Pytorch版本:2.1.0
--torch-npu版本:2.1.0.post3
--Python 版本:3.9.14
--Transformers: 4.38.2
The text was updated successfully, but these errors were encountered: