forked from pyconsk/snakepit-game
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnumber.py
204 lines (162 loc) · 5.28 KB
/
number.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from typing import Optional, List, Set
from collections import deque
from snakepit.robot_snake import RobotSnake
from snakepit.datatypes import Position, Vector
import functools
import logging
import random
import string
import contextlib
import time
logging.basicConfig()
@contextlib.contextmanager
def timer(name):
start = time.time()
yield
took = time.time() - start
logging.info(f'{name} took {took:.6f}')
class CannotContinue(Exception):
pass
class NumberRobotSnake(RobotSnake):
def __init__(self, game_settings, world, color):
super().__init__(game_settings, world, color)
self.length = 0
self.head = Position(0, 0)
self.tail = Position(0, 0)
self.body: List[Position] = []
self.current_direction: Optional[Vector]
self.plan: deque[Position] = deque()
self.plan_directions: deque[Vector] = deque()
self.BLOCKS = {self.CH_STONE} | self.BODY_CHARS | self.DEAD_BODY_CHARS
@functools.lru_cache(maxsize = 1600)
def is_block(self, point: Position):
if point.x < 0 or point.x >= self.world.SIZE_X or point.y < 0 or point.y >= self.world.SIZE_Y:
return True
char, color = self.world[point.y][point.x]
return char in self.BLOCKS
def iter_directions(self, preferred_direction: Vector, backup_directions: Set[Vector]):
yield preferred_direction
while backup_directions:
choice = random.choice(list(backup_directions))
backup_directions.remove(choice)
yield choice
def get_to(self, point: Position) -> None:
self.plan.clear()
self.plan_directions.clear()
# current
cx = self.head.x
cy = self.head.y
while not (cx == point.x and cy == point.y):
# logging.info(f'Plan step {len(self.plan)}')
dx = cx - point.x
dy = cy - point.y
if dx == 0:
preferred_direction = self.UP if dy > 0 else self.DOWN
backup_directions = {self.RIGHT, self.LEFT}
elif dy == 0:
preferred_direction = self.LEFT if dx > 0 else self.RIGHT
backup_directions = {self.UP, self.DOWN}
elif abs(dx) > abs(dy):
preferred_direction = self.LEFT if dx > 0 else self.RIGHT
backup_directions = {self.UP if dy > 0 else self.DOWN}
else:
preferred_direction = self.UP if dy > 0 else self.DOWN
backup_directions = {self.LEFT if dx > 0 else self.RIGHT}
for direction in self.iter_directions(preferred_direction, backup_directions):
next_point = Position(cx + direction.xdir, cy + direction.ydir)
if not(self.is_block(next_point) or next_point in self.plan or self.free_room(next_point) < 1.0):
self.plan.append(next_point)
self.plan_directions.append(direction)
cx = next_point.x
cy = next_point.y
break
else:
raise CannotContinue()
def flood_fill(self, point: Position):
points_to_check = [point]
done = set()
while points_to_check:
cp = points_to_check.pop()
if cp not in done:
if self.is_block(cp):
continue
yield cp
# add neighborhood
for direction in self.DIRECTIONS:
next_point = Position(cp.x + direction.xdir, cp.y + direction.ydir)
if next_point not in done:
points_to_check.append(next_point)
done.add(cp)
def free_room(self, point: Position) -> float:
points = 0
for _ in self.flood_fill(point):
points += 1
if points >= self.length:
return 1.0
return points / self.length
def get_position(self):
self.body.clear()
self.length = 0
for y in range(self.world.SIZE_Y):
for x in range(self.world.SIZE_X):
char, color = self.world[y][x]
if color == self.color: # our snake
if char == self.CH_TAIL:
self.tail = Position(x, y)
elif char == self.CH_HEAD:
self.head = Position(x, y)
elif char == self.CH_BODY:
pass
self.body.append(Position(x, y))
self.length += 1
# logging.info(f'Current head {self.head}')
# logging.info(f'Current tail {self.tail}')
def distance(self, point_1: Position, point_2: Position) -> int:
return abs(point_1.x - point_2.x) + abs(point_1.y - point_2.y)
def compute_score(self, bonus: int, distance: int) -> float:
return bonus / distance
def find_best(self) -> Optional[Position]:
points = []
for y in range(self.world.SIZE_Y):
for x in range(self.world.SIZE_X):
char, color = self.world[y][x]
if char in string.digits:
point = Position(x, y)
distance = self.distance(self.head, point)
points.append((self.compute_score(int(char), distance), point))
try:
best = max(points)
# logging.info(f'Best position is {best[1]} with score {best[0]}')
return best[1]
except ValueError:
return None
def backup(self):
directions = list(self.DIRECTIONS)
random.shuffle(directions)
unblocked = []
for direction in directions:
next_point = Position(self.head.x + direction.xdir, self.head.y + direction.ydir)
if not self.is_block(next_point):
free_room = self.free_room(next_point)
if free_room == 1.0:
return direction
else:
unblocked.append((free_room, direction))
if unblocked:
_, direction = max(unblocked)
return direction
return None
def next_direction(self, initial=False):
self.is_block.cache_clear()
self.get_position()
best = self.find_best()
if best is None:
return self.backup()
try:
self.get_to(best)
except CannotContinue:
return self.backup()
if self.plan_directions:
next_direction = self.plan_directions.popleft()
return next_direction
return self.backup()