forked from LyuJ1998/HandTailor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
manolayer.py
270 lines (223 loc) · 10.6 KB
/
manolayer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import os
import jax.numpy as np
from jax import jit
import pickle
import cv2
class ManoLayer():
__constants__ = [
'use_pca', 'rot', 'ncomps', 'ncomps', 'kintree_parents', 'check',
'side', 'center_idx', 'joint_rot_mode'
]
def __init__(self,
center_idx=None,
flat_hand_mean=True,
ncomps=6,
side='right',
mano_root='.',
use_pca=True,
root_rot_mode='axisang',
joint_rot_mode='axisang',
robust_rot=False):
super().__init__()
self.center_idx = center_idx
self.robust_rot = robust_rot
if root_rot_mode == 'axisang':
self.rot = 3
else:
self.rot = 6
self.flat_hand_mean = flat_hand_mean
self.side = side
self.use_pca = use_pca
self.joint_rot_mode = joint_rot_mode
self.root_rot_mode = root_rot_mode
if use_pca:
self.ncomps = ncomps
else:
self.ncomps = 45
if side == 'right':
self.mano_path = os.path.join(mano_root, 'MANO_RIGHT.pkl')
elif side == 'left':
self.mano_path = os.path.join(mano_root, 'MANO_LEFT.pkl')
smpl_data = self._ready_arguments(self.mano_path)
hands_components = smpl_data['hands_components'] #45*45
self.smpl_data = smpl_data
self.betas = np.array(smpl_data['betas'])[np.newaxis,...]
self.shapedirs = np.array(smpl_data['shapedirs'])
self.posedirs = np.array(smpl_data['posedirs'])
self.v_template = np.array(smpl_data['v_template'])[np.newaxis,...]
self.J_regressor = np.array(smpl_data['J_regressor'].toarray())
self.weights = np.array(smpl_data['weights'])
self.faces = np.array(smpl_data['f'])
# Get hand mean
hands_mean = np.zeros(hands_components.shape[1]) if flat_hand_mean else smpl_data['hands_mean']
self.hands_mean = hands_mean.copy()[np.newaxis,...] #45 all zeros
selected_components = hands_components[:ncomps]
self.tselected_comps = np.array(selected_components)
# Kinematic chain params
self.kintree_table = smpl_data['kintree_table']
parents = list(self.kintree_table[0].tolist())
self.kintree_parents = parents
def _ready_arguments(self, fname_or_dict, posekey4vposed='pose'):
dd = pickle.load(open(fname_or_dict, 'rb'), encoding='latin1')
want_shapemodel = 'shapedirs' in dd
nposeparms = dd['kintree_table'].shape[1] * 3
if 'trans' not in dd:
dd['trans'] = np.zeros(3)
if 'pose' not in dd:
dd['pose'] = np.zeros(nposeparms)
if 'shapedirs' in dd and 'betas' not in dd:
dd['betas'] = np.zeros(dd['shapedirs'].shape[-1])
for s in [
'v_template', 'weights', 'posedirs', 'pose', 'trans', 'shapedirs',
'betas', 'J'
]:
if (s in dd) and not hasattr(dd[s], 'dterms'):
dd[s] = np.array(dd[s])
assert (posekey4vposed in dd)
if want_shapemodel:
dd['v_shaped'] = dd['shapedirs'].dot(dd['betas']) + dd['v_template']
v_shaped = dd['v_shaped']
J_tmpx = dd['J_regressor'] * v_shaped[:, 0]
J_tmpy = dd['J_regressor'] * v_shaped[:, 1]
J_tmpz = dd['J_regressor'] * v_shaped[:, 2]
dd['J'] = np.vstack((J_tmpx, J_tmpy, J_tmpz)).T
pose_map_res = self._lrotmin(dd[posekey4vposed])
dd['v_posed'] = v_shaped + dd['posedirs'].dot(pose_map_res)
else:
pose_map_res = self._lrotmin(dd[posekey4vposed])
dd_add = dd['posedirs'].dot(pose_map_res)
dd['v_posed'] = dd['v_template'] + dd_add
return dd
def _lrotmin(self, p):
p = p.ravel()[3:]
return np.concatenate(
[(cv2.Rodrigues(pp)[0] - np.eye(3)).ravel()
for pp in p.reshape((-1, 3))]).ravel()
def _posemap_axisang(self, pose_vectors):
rot_nb = int(pose_vectors.shape[1] / 3)
pose_vec_reshaped = pose_vectors.reshape(-1, 3)
rot_mats = self._batch_rodrigues(pose_vec_reshaped)
rot_mats = rot_mats.reshape(pose_vectors.shape[0], rot_nb * 9)
pose_maps = self._subtract_flat_id(rot_mats)
return pose_maps, rot_mats
def _subtract_flat_id(self, rot_mats):
# Subtracts identity as a flattened tensor
rot_nb = int(rot_mats.shape[1] / 9)
id_flat = np.tile(np.eye(3, dtype=rot_mats.dtype).reshape(1, 9),(1,rot_nb))
# id_flat.requires_grad = False
results = rot_mats - id_flat
return results
def _quat2mat(self, quat):
norm_quat = quat
norm_quat = norm_quat / np.linalg.norm(norm_quat + 1e-8, axis=1, keepdims=True)
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:,
2], norm_quat[:,
3]
batch_size = quat.shape[0]
w2, x2, y2, z2 = w**2, x**2, y**2, z**2
wx, wy, wz = w * x, w * y, w * z
xy, xz, yz = x * y, x * z, y * z
rotMat = np.stack([
w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy,
w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz,
w2 - x2 - y2 + z2
],
axis=1).reshape(batch_size, 3, 3)
return rotMat
def _batch_rodrigues(self, axisang):
#axisang N x 3
axisang_norm = np.linalg.norm(axisang + 1e-8, axis=1)
angle = axisang_norm[...,np.newaxis]
axisang_normalized = axisang / angle
angle = angle * 0.5
v_cos = np.cos(angle)
v_sin = np.sin(angle)
quat = np.concatenate((v_cos, v_sin * axisang_normalized), 1)
rot_mat = self._quat2mat(quat)
rot_mat = rot_mat.reshape(rot_mat.shape[0], 9)
return rot_mat
def _with_zeros(self, tensor):
batch_size = tensor.shape[0]
padding = np.array([0.0, 0.0, 0.0, 1.0])
concat_list = (tensor, np.tile(padding.reshape(1, 1, 4),(batch_size, 1, 1)))
cat_res = np.concatenate(concat_list, 1)
return cat_res
def __call__(self,
pose_coeffs,
betas=np.zeros(1),
):
batch_size = pose_coeffs.shape[0]
# Get axis angle from PCA components and coefficients
# Remove global rot coeffs
hand_pose_coeffs = pose_coeffs[:, self.rot:self.rot +self.ncomps]
full_hand_pose = hand_pose_coeffs
# Concatenate back global rot
full_pose = np.concatenate((pose_coeffs[:, :self.rot],self.hands_mean + full_hand_pose), 1)
# compute rotation matrixes from axis-angle while skipping global rotation
pose_map, rot_map = self._posemap_axisang(full_pose)
root_rot = rot_map[:, :9].reshape(batch_size, 3, 3)
rot_map = rot_map[:, 9:]
pose_map = pose_map[:, 9:]
# Full axis angle representation with root joint
v_shaped = np.matmul(self.shapedirs, betas.transpose((1, 0))).transpose((2, 0, 1)) + self.v_template
j = np.matmul(self.J_regressor, v_shaped)
# th_pose_map should have shape 20x135
v_posed = v_shaped + np.matmul(self.posedirs, pose_map.transpose((1, 0))[np.newaxis,...]).transpose((2, 0, 1))
# Final T pose with transformation done !
# Global rigid transformation
root_j = j[:, 0, :].reshape(batch_size, 3, 1)
root_trans = self._with_zeros(np.concatenate((root_rot, root_j), 2))
all_rots = rot_map.reshape(rot_map.shape[0], 15, 3, 3)
lev1_idxs = [1, 4, 7, 10, 13]
lev2_idxs = [2, 5, 8, 11, 14]
lev3_idxs = [3, 6, 9, 12, 15]
lev1_rots = all_rots[:, [idx - 1 for idx in lev1_idxs]]
lev2_rots = all_rots[:, [idx - 1 for idx in lev2_idxs]]
lev3_rots = all_rots[:, [idx - 1 for idx in lev3_idxs]]
lev1_j = j[:, lev1_idxs]
lev2_j = j[:, lev2_idxs]
lev3_j = j[:, lev3_idxs]
# From base to tips
# Get lev1 results
all_transforms = [root_trans[:,np.newaxis,...]]
lev1_j_rel = lev1_j - root_j.transpose((0, 2, 1))
lev1_rel_transform_flt = self._with_zeros(np.concatenate((lev1_rots, lev1_j_rel[...,np.newaxis]), 3).reshape(-1, 3, 4))
root_trans_flt = np.tile(root_trans[:,np.newaxis,...],(1, 5, 1, 1)).reshape(root_trans.shape[0] * 5, 4, 4)
lev1_flt = np.matmul(root_trans_flt, lev1_rel_transform_flt)
all_transforms.append(lev1_flt.reshape(all_rots.shape[0], 5, 4, 4))
# Get lev2 results
lev2_j_rel = lev2_j - lev1_j
lev2_rel_transform_flt = self._with_zeros(np.concatenate((lev2_rots, lev2_j_rel[...,np.newaxis]), 3).reshape(-1, 3, 4))
lev2_flt = np.matmul(lev1_flt, lev2_rel_transform_flt)
all_transforms.append(lev2_flt.reshape(all_rots.shape[0], 5, 4, 4))
# Get lev3 results
lev3_j_rel = lev3_j - lev2_j
lev3_rel_transform_flt = self._with_zeros(np.concatenate((lev3_rots, lev3_j_rel[...,np.newaxis]), 3).reshape(-1, 3, 4))
lev3_flt = np.matmul(lev2_flt, lev3_rel_transform_flt)
all_transforms.append(lev3_flt.reshape(all_rots.shape[0], 5, 4, 4))
reorder_idxs = [0, 1, 6, 11, 2, 7, 12, 3, 8, 13, 4, 9, 14, 5, 10, 15]
results = np.concatenate(all_transforms, 1)[:, reorder_idxs]
results_global = results
joint_js = np.concatenate((j, np.zeros((j.shape[0], 16, 1))), 2)
tmp2 = np.matmul(results, joint_js[...,np.newaxis])
results2 = (results - np.concatenate((np.zeros((*tmp2.shape[:2], 4, 3)), tmp2), 3)).transpose((0, 2, 3, 1))
T = np.matmul(results2, self.weights.transpose((1, 0)))
rest_shape_h = np.concatenate((
v_posed.transpose((0, 2, 1)),
np.ones((batch_size, 1, v_posed.shape[1]))
), 1)
verts = (T * rest_shape_h[:,np.newaxis,...]).sum(2).transpose((0, 2, 1))
verts = verts[:, :, :3]
jtr = results_global[:, :, :3, 3]
# In addition to MANO reference joints we sample vertices on each finger
# to serve as finger tips
tips = verts[:, [745, 317, 444, 556, 673]]
jtr = np.concatenate((jtr, tips), 1)
# Reorder joints to match visualization utilities
jtr = jtr[:, [0, 13, 14, 15, 16, 1, 2, 3, 17, 4, 5, 6, 18, 10, 11, 12, 19, 7, 8, 9, 20]]
center_joint = jtr[:, self.center_idx][:,np.newaxis,...]
jtr = jtr - center_joint
verts = verts - center_joint
return verts, jtr, full_pose
if __name__ == "__main__":
manolayer = ManoLayer()