-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmain.py
208 lines (175 loc) · 8.33 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Main function."""
__author__ = 'Chong Guo <[email protected]>'
__copyright__ = 'Copyright 2018, Chong Guo'
__license__ = 'MIT'
import os
import math
import os.path as osp
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.cuda as cuda
import torch.optim as optim
import torch.utils as utils
from torchvision import models, datasets, transforms
from model.resnet import resnet_cifar
from transform.log_space import LogSpace
from transform.disturb_illumination import DisturbIllumination
def calculate_mean_and_std(enable_log_transform):
transform = transforms.Compose([
transforms.ToTensor(),
])
if enable_log_transform:
transform = transforms.Compose([
transform,
LogSpace(),
])
dataset = datasets.CIFAR100(root='data', train=True, download=True, transform=transform)
dataloader = utils.data.DataLoader(dataset)
data = np.stack([inputs[0].numpy() for inputs, targets in dataloader])
mean = data.mean(axis=(0,2,3))
std = data.std(axis=(0,2,3))
return mean, std
if __name__ == '__main__':
# Setup args
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('-lr','--learning-rate', type=float, default=0.1,
help='initial learning rate (default: 0.1)')
parser.add_argument('-e', '--epochs', type=int, default=150,
help='number of epochs to train (default: 150)')
parser.add_argument('--train-batch-size', type=int, default=64,
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=64,
help='input batch size for testing (default: 64)')
parser.add_argument('--lr-decay-interval', type=int, default=50,
help='number of epochs to decay the learning rate (default: 50)')
parser.add_argument('--num-workers', type=int, default=0,
help='number of workers (default: 0)')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum (default: 0.9)')
parser.add_argument('--seed', type=int, default=1,
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=100,
help='how many batches to wait before logging training status (default: 100)')
parser.add_argument('--save-interval', type=int, default=50,
help='how many batches to wait before saving testing output image (default: 50)')
parser.add_argument('-s', '--save-directory', type=str, default='checkpoint',
help='checkpoint save directory (default: checkpoint)')
parser.add_argument('-n', '--env-name', type=str, default=None,
help='experiment name (default: None)')
parser.add_argument('-dtest', '--enable-disturb-illumination-test', action='store_true', default=False,
help='enable disturb illumination for testing data')
parser.add_argument('-dtrain', '--enable-disturb-illumination-train', action='store_true', default=False,
help='enable disturb illumination for training data')
parser.add_argument('-l', '--enable-log-transform', action='store_true', default=False,
help='enable log transform for both traning and testing data')
parser.add_argument('-t', '--only-testing', action='store_true', default=False,
help='only run testing')
parser.add_argument('-r', '--resume', action='store_true', default=False,
help='resume from checkpoint')
args = parser.parse_args()
# Init variables
print('==> Init variables..')
use_cuda = cuda.is_available()
best_accuracy = 0 # best testing accuracy
best_epoch = 0 # epoch with the best testing accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
if args.env_name is None:
args.env_name = "Log:%s-Train:%s-Test:%s" % (args.enable_log_transform, \
args.enable_disturb_illumination_train, \
args.enable_disturb_illumination_test)
args.save_directory = osp.join(args.save_directory, args.env_name)
# Init seed
print('==> Init seed..')
torch.manual_seed(args.seed)
if use_cuda:
cuda.manual_seed(args.seed)
# Calculate mean and std
print('==> Prepare mean and std..')
print("\t Log : %s" % args.enable_log_transform)
if not args.enable_log_transform:
# mean_log, std_log = (0.50707543, 0.48655024, 0.44091907), (0.26733398, 0.25643876, 0.27615029)
mean_log, std_log = calculate_mean_and_std(enable_log_transform=False)
else:
# mean_log, std_log = (6.69928741, 6.65900993, 6.40947819), (1.2056427, 1.15127575, 1.31597221)
mean_log, std_log = calculate_mean_and_std(enable_log_transform=True)
print('\tmean_log = ', mean_log)
print('\tstd_log = ', std_log)
data_mean = torch.FloatTensor(mean_log)
data_std = torch.FloatTensor(std_log)
# Prepare training transform
print('==> Prepare training transform..')
t_trans = [
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
]
if args.enable_disturb_illumination_train:
print("\tDisturbance on train")
t_trans += [DisturbIllumination(), ]
if args.enable_log_transform:
print("\tLogSpace on train")
t_trans += [LogSpace(), ]
traning_transform = transforms.Compose([
*t_trans,
transforms.Normalize(data_mean, data_std),
])
print(traning_transform)
# Prepare testing transform
print('==> Prepare testing transform..')
t_trans = [
transforms.ToTensor(),
]
if args.enable_disturb_illumination_test:
print("\tDisturbance on test")
t_trans += [DisturbIllumination(), ]
if args.enable_log_transform:
print("\tLogSpace on test")
t_trans += [LogSpace(), ]
testing_transform = transforms.Compose([
*t_trans,
transforms.Normalize(data_mean, data_std),
])
print(testing_transform)
# Init dataloaderenable_log_transform
print('==> Init dataloader..')
trainset = datasets.CIFAR100(root='data', train=True, download=True, transform=traning_transform)
trainloader = utils.data.DataLoader(trainset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.num_workers)
testset = datasets.CIFAR100(root='data', train=False, download=True, transform=testing_transform)
testloader = utils.data.DataLoader(testset, batch_size=args.test_batch_size, shuffle=False, num_workers=args.num_workers)
# Model
print('==> Building model..')
net = resnet_cifar.ResNet('res34', num_classes=100)
if use_cuda:
net = net.cuda()
# Resume if required
if args.resume:
print('==> Resuming from checkpoint..')
assert os.path.isdir(args.save_directory), 'Error: no checkpoint directory found!'
if use_cuda:
checkpoint = torch.load(args.save_directory + '/ckpt.t7')
else:
checkpoint = torch.load(args.save_directory + '/ckpt.t7', map_location=lambda storage, loc: storage)
start_epoch = checkpoint['start_epoch']
best_epoch = checkpoint['best_epoch']
best_accuracy = checkpoint['best_accuracy']
net.load_state_dict(checkpoint['state_dict'])
# Loss function and Optimizer
print('==> Setup loss function and optimizer..')
criterion = nn.CrossEntropyLoss()
if use_cuda:
criterion = criterion.cuda()
optimizer = optim.SGD(net.parameters(), lr=args.learning_rate,
momentum=args.momentum, weight_decay=1e-4,
nesterov=True)
# Training
print('==> Init trainer..')
from trainer import Trainer
train = Trainer(net, trainloader, testloader, optimizer, start_epoch=start_epoch,
best_accuracy=best_accuracy, best_epoch=best_epoch, base_lr=args.learning_rate,
criterion=criterion, lr_decay_interval=args.lr_decay_interval, use_cuda=use_cuda, save_dir=args.save_directory)
print('==> Start training..')
train.execute(args.epochs)