forked from mrahtz/learning-from-human-preferences
-
Notifications
You must be signed in to change notification settings - Fork 0
/
reward_predictor_test.py
executable file
·282 lines (246 loc) · 10.5 KB
/
reward_predictor_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#!/usr/bin/env python3
""" THIS IS THE MOST IMPORTANT FILEEEE"""
import unittest
import tensorflow as tf
import termcolor
import numpy as np
from numpy import exp, log
from numpy.testing import (assert_allclose, assert_approx_equal,
assert_array_equal, assert_raises)
from reward_predictor import RewardPredictorNetwork
from reward_predictor_core_network import net_cnn
class TestRewardPredictor(unittest.TestCase):
def setUp(self):
self.create_reward_predictor(dropout=0.5, batchnorm=True)
termcolor.cprint(self._testMethodName, 'red')
def create_reward_predictor(self, dropout, batchnorm):
tf.reset_default_graph()
self.sess = tf.Session()
self.rpn = RewardPredictorNetwork(batchnorm=batchnorm, dropout=dropout,
lr=1e-3,
core_network=net_cnn)
self.sess.run(tf.global_variables_initializer())
def test_weight_sharing(self):
"""
Check that both legs of the network give the same reward output
for the same segment input.
"""
# We deliberately /don't/ use the same dropout for each leg of the
# network. (If we do use the same dropout, without batchnorm,
# Pong doesn't train successfully. If we use different dropout, Pong
# does train successfully. I haven't tried training Pong with
# batchnorm.) So we disable dropout for this test.
self.create_reward_predictor(dropout=0.0, batchnorm=True)
s = 255 * np.random.rand(100, 84, 84, 4)
feed_dict_nontraining = {
self.rpn.s1: [s],
self.rpn.s2: [s],
self.rpn.training: True
}
feed_dict_training = {
self.rpn.s1: [s],
self.rpn.s2: [s],
self.rpn.training: False
}
for feed_dict in [feed_dict_nontraining, feed_dict_training]:
for _ in range(3): # to check different dropouts
[rs1], [rs2] = self.sess.run([self.rpn.rs1, self.rpn.rs2], feed_dict)
# Check rs1 != 0.0
assert_raises(AssertionError, assert_array_equal, rs1, 0.0)
assert_allclose(rs1, rs2)
def test_batchnorm_sharing(self):
"""
Check that batchnorm statistics are the same between the two legs of
the network.
"""
n_frames = 20
s1 = 255 * np.random.normal(loc=1.0, size=(n_frames, 84, 84, 4))
s2 = 255 * np.random.normal(loc=-1.0, size=(n_frames, 84, 84, 4))
feed_dict = {
self.rpn.s1: [s1],
self.rpn.s2: [s2],
self.rpn.pref: [[0.0, 1.0]],
self.rpn.training: True}
self.sess.run(self.rpn.train, feed_dict)
feed_dict = {self.rpn.s1: [s1], self.rpn.s2: [s1], self.rpn.training: False}
[rs1], [rs2] = self.sess.run([self.rpn.rs1, self.rpn.rs2], feed_dict)
# Check rs1 != 0.0
assert_raises(AssertionError, assert_array_equal, rs1, 0.0)
assert_allclose(rs1, rs2)
def test_loss(self):
"""
Check that the loss is calculated correctly.
"""
# hack to ensure numerical stability
rs1 = rs2 = 100
n_frames = 20
while rs1 > 50 or rs2 > 50:
s1 = 255 * np.random.normal(loc=1.0, size=(n_frames, 84, 84, 4))
s2 = 255 * np.random.normal(loc=-1.0, size=(n_frames, 84, 84, 4))
feed_dict = {
self.rpn.s1: [s1],
self.rpn.s2: [s2],
self.rpn.training: True
}
[rs1], [rs2] = self.sess.run([self.rpn.rs1, self.rpn.rs2],
feed_dict)
prefs = [[0.0, 1.0], [1.0, 0.0], [0.5, 0.5]]
for pref in prefs:
feed_dict[self.rpn.pref] = [pref]
[rs1], [rs2], loss = self.sess.run(
[self.rpn.rs1, self.rpn.rs2, self.rpn.loss], feed_dict)
p_s1_s2 = exp(rs1) / (exp(rs1) + exp(rs2))
p_s2_s1 = exp(rs2) / (exp(rs1) + exp(rs2))
expected = -(pref[0] * log(p_s1_s2) + pref[1] * log(p_s2_s1))
assert_approx_equal(loss, expected, significant=3)
def test_batches(self):
"""
Present a batch of two trajectories and check that we get the same
results as if we'd presented the trajectories individually.
"""
n_segs = 2
n_frames = 20
prefs = [[0., 1.], [1., 0.]]
s1s = []
s2s = []
for _ in range(n_segs):
s1 = 255 * np.random.normal(loc=1.0, size=(n_frames, 84, 84, 4))
s2 = 255 * np.random.normal(loc=-1.0, size=(n_frames, 84, 84, 4))
s1s.append(s1)
s2s.append(s2)
# Step 1: present all trajectories as one big batch
feed_dict = {
self.rpn.s1: s1s,
self.rpn.s2: s2s,
self.rpn.pref: prefs,
self.rpn.training: False
}
rs1_batch, rs2_batch, pred_batch, loss_batch = self.sess.run(
[self.rpn.rs1, self.rpn.rs2, self.rpn.pred, self.rpn.loss],
feed_dict)
# Step 2: present trajectories individually
rs1_nobatch = []
rs2_nobatch = []
pred_nobatch = []
loss_nobatch = 0
for i in range(n_segs):
feed_dict = {
self.rpn.s1: [s1s[i]],
self.rpn.s2: [s2s[i]],
self.rpn.pref: [prefs[i]],
self.rpn.training: False
}
[rs1], [rs2], [pred], loss = self.sess.run(
[self.rpn.rs1, self.rpn.rs2, self.rpn.pred, self.rpn.loss],
feed_dict)
rs1_nobatch.append(rs1)
rs2_nobatch.append(rs2)
pred_nobatch.append(pred)
loss_nobatch += loss
# Compare
assert_allclose(rs1_batch, rs1_nobatch, atol=1e-5)
assert_allclose(rs2_batch, rs2_nobatch, atol=1e-5)
assert_allclose(pred_batch, pred_nobatch, atol=1e-5)
assert_approx_equal(loss_batch, loss_nobatch, significant=4)
def test_training(self):
"""
Present two trajectories with different preferences and see whether
training really does work (whether the reward predicted by the network
matches the preferences after a few loops of running the training
operation).
Note: because of variations in training, this test does not always pass.
"""
n_frames = 20
s1 = 255 * np.random.normal(loc=1.0, size=(n_frames, 84, 84, 4))
s2 = 255 * np.random.normal(loc=-1.0, size=(n_frames, 84, 84, 4))
feed_dict = {
self.rpn.s1: [s1],
self.rpn.s2: [s2]
}
prefs = [[0.0, 1.0], [1.0, 0.0], [0.5, 0.5]]
for pref in prefs:
print("Preference", pref)
feed_dict[self.rpn.pref] = [pref]
# Important to reset batch normalization statistics
self.sess.run(tf.global_variables_initializer())
for _ in range(150):
feed_dict[self.rpn.training] = True
self.sess.run(self.rpn.train, feed_dict)
# Uncomment these for more thorough manual testing.
# (For the first case, rs1 should become higher
# than rs2, and the distance between them should increase;
# for the second case, rs2 should become higher;
# for the third case, they should become approximately the
# same.)
"""
feed_dict[self.rpn.training] = False
ops = [self.rpn.rs1, self.rpn.rs2, self.rpn.loss]
[rs1], [rs2], loss = self.sess.run(ops, feed_dict)
print(" ".join(3 * ["{:>8.3f}"]).format(rs1, rs2, loss))
print()
"""
feed_dict[self.rpn.training] = False
[rs1], [rs2] = self.sess.run([self.rpn.rs1, self.rpn.rs2], feed_dict)
if pref[0] > pref[1]:
self.assertGreater(rs1 - rs2, 10)
elif pref[1] > pref[0]:
self.assertGreater(rs2 - rs1, 10)
elif pref[0] == pref[1]:
self.assertLess(abs(rs2 - rs1), 2)
def test_training_batches(self):
"""
Check that after training with a batch of 4 segments, each with their own preferences,
the predicted preference for each of the segments is as expected.
"""
n_frames = 20
s1s = 255 * np.random.normal(loc=1.0, size=(4, n_frames, 84, 84, 4))
s2s = 255 * np.random.normal(loc=-1.0, size=(4, n_frames, 84, 84, 4))
prefs = [[1.0, 0.0], [1.0, 0.0], [0.0, 1.0], [0.0, 1.0]]
feed_dict = {
self.rpn.s1: s1s,
self.rpn.s2: s2s,
self.rpn.pref: prefs,
self.rpn.training: True
}
for i in range(100):
if i % 10 == 0:
print("Training {}/100".format(i))
self.sess.run(self.rpn.train, feed_dict)
feed_dict[self.rpn.training] = False
preds = self.sess.run(self.rpn.pred, feed_dict)
assert_allclose(preds[0], [1., 0.], atol=1e-1)
assert_allclose(preds[1], [1., 0.], atol=1e-1)
assert_allclose(preds[2], [0., 1.], atol=1e-1)
assert_allclose(preds[3], [0., 1.], atol=1e-1)
def test_accuracy(self):
"""
Test accuracy op.
"""
n_frames = 20
batch_n = 16
s1s = 255 * np.random.normal(loc=1.0, size=(batch_n, n_frames, 84, 84, 4))
s2s = 255 * np.random.normal(loc=-1.0, size=(batch_n, n_frames, 84, 84, 4))
possible_prefs = [[1.0, 0.0], [0.0, 1.0]]
possible_prefs = np.array(possible_prefs)
prefs = possible_prefs[np.random.choice([0, 1], size=batch_n)]
feed_dict = {
self.rpn.s1: s1s,
self.rpn.s2: s2s,
self.rpn.pref: prefs,
self.rpn.training: True
}
# Steer away from chance performance
for _ in range(5):
self.sess.run(self.rpn.train, feed_dict)
feed_dict[self.rpn.training] = False
preds = self.sess.run(self.rpn.pred, feed_dict)
n_correct = 0
for pref, pred in zip(prefs, preds):
if pref[0] == 1.0 and pred[0] > pred[1] or \
pref[1] == 1.0 and pred[1] > pred[0]:
n_correct += 1
accuracy_expected = n_correct / batch_n
accuracy_actual = self.sess.run(self.rpn.accuracy, feed_dict)
assert_approx_equal(accuracy_actual, accuracy_expected)
if __name__ == '__main__':
unittest.main()