forked from YILING0013/AI_NovelGenerator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllm_adapters.py
194 lines (175 loc) · 7.1 KB
/
llm_adapters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# llm_adapters.py
# -*- coding: utf-8 -*-
import logging
from typing import Optional
from langchain_openai import ChatOpenAI, AzureChatOpenAI
def ensure_openai_base_url_has_v1(url: str) -> str:
import re
url = url.strip()
if not url:
return url
if not re.search(r'/v\d+$', url):
if '/v1' not in url:
url = url.rstrip('/') + '/v1'
return url
class BaseLLMAdapter:
"""
统一的 LLM 接口基类,为不同后端(OpenAI、Ollama、ML Studio 等)提供一致的方法签名。
"""
def invoke(self, prompt: str) -> str:
raise NotImplementedError("Subclasses must implement .invoke(prompt) method.")
class DeepSeekAdapter(BaseLLMAdapter):
"""
适配官方/OpenAI兼容接口(使用 langchain.ChatOpenAI)
"""
def __init__(self, api_key: str, base_url: str, model_name: str, max_tokens: int, temperature: float = 0.7, timeout: Optional[int] = 600):
self.base_url = ensure_openai_base_url_has_v1(base_url)
self.api_key = api_key
self.model_name = model_name
self.max_tokens = max_tokens
self.temperature = temperature
self.timeout = timeout
self._client = ChatOpenAI(
model=self.model_name,
api_key=self.api_key,
base_url=self.base_url,
max_tokens=self.max_tokens,
temperature=self.temperature,
timeout=self.timeout
)
def invoke(self, prompt: str) -> str:
response = self._client.invoke(prompt)
if not response:
logging.warning("No response from DeepSeekAdapter.")
return ""
return response.content
class OpenAIAdapter(BaseLLMAdapter):
"""
适配官方/OpenAI兼容接口(使用 langchain.ChatOpenAI)
"""
def __init__(self, api_key: str, base_url: str, model_name: str, max_tokens: int, temperature: float = 0.7, timeout: Optional[int] = 600):
self.base_url = ensure_openai_base_url_has_v1(base_url)
self.api_key = api_key
self.model_name = model_name
self.max_tokens = max_tokens
self.temperature = temperature
self.timeout = timeout
self._client = ChatOpenAI(
model=self.model_name,
api_key=self.api_key,
base_url=self.base_url,
max_tokens=self.max_tokens,
temperature=self.temperature,
timeout=self.timeout
)
def invoke(self, prompt: str) -> str:
response = self._client.invoke(prompt)
if not response:
logging.warning("No response from OpenAIAdapter.")
return ""
return response.content
class AzureOpenAIAdapter(BaseLLMAdapter):
"""
适配 Azure OpenAI 接口(使用 langchain.ChatOpenAI)
"""
def __init__(self, api_key: str, base_url: str, model_name: str, max_tokens: int, temperature: float = 0.7, timeout: Optional[int] = 600):
import re
match = re.match(r'https://(.+?)/openai/deployments/(.+?)/chat/completions\?api-version=(.+)', base_url)
if match:
self.azure_endpoint = f"https://{match.group(1)}"
self.azure_deployment = match.group(2)
self.api_version = match.group(3)
else:
raise ValueError("Invalid Azure OpenAI base_url format")
self.api_key = api_key
self.model_name = self.azure_deployment
self.max_tokens = max_tokens
self.temperature = temperature
self.timeout = timeout
self._client = AzureChatOpenAI(
azure_endpoint=self.azure_endpoint,
azure_deployment=self.azure_deployment,
api_version=self.api_version,
api_key=self.api_key,
max_tokens=self.max_tokens,
temperature=self.temperature,
timeout=self.timeout
)
def invoke(self, prompt: str) -> str:
response = self._client.invoke(prompt)
if not response:
logging.warning("No response from AzureOpenAIAdapter.")
return ""
return response.content
class OllamaAdapter(BaseLLMAdapter):
"""
Ollama 同样有一个 OpenAI-like /v1/chat 接口,可直接使用 ChatOpenAI。
但是通常 Ollama 默认本地服务在 http://localhost:11434,如果符合OpenAI风格即可直接传参。
"""
def __init__(self, api_key: str, base_url: str, model_name: str, max_tokens: int, temperature: float = 0.7, timeout: Optional[int] = 600):
self.base_url = ensure_openai_base_url_has_v1(base_url)
self.api_key = api_key
self.model_name = model_name
self.max_tokens = max_tokens
self.temperature = temperature
self.timeout = timeout
self._client = ChatOpenAI(
model=self.model_name,
api_key=self.api_key,
base_url=self.base_url,
max_tokens=self.max_tokens,
temperature=self.temperature,
timeout=self.timeout
)
def invoke(self, prompt: str) -> str:
response = self._client.invoke(prompt)
if not response:
logging.warning("No response from OllamaAdapter.")
return ""
return response.content
class MLStudioAdapter(BaseLLMAdapter):
def __init__(self, api_key: str, base_url: str, model_name: str, max_tokens: int, temperature: float = 0.7, timeout: Optional[int] = 600):
self.base_url = ensure_openai_base_url_has_v1(base_url)
self.api_key = api_key
self.model_name = model_name
self.max_tokens = max_tokens
self.temperature = temperature
self.timeout = timeout
self._client = ChatOpenAI(
model=self.model_name,
api_key=self.api_key,
base_url=self.base_url,
max_tokens=self.max_tokens,
temperature=self.temperature,
timeout=self.timeout
)
def invoke(self, prompt: str) -> str:
response = self._client.invoke(prompt)
if not response:
logging.warning("No response from MLStudioAdapter.")
return ""
return response.content
def create_llm_adapter(
interface_format: str,
base_url: str,
model_name: str,
api_key: str,
temperature: float,
max_tokens: int,
timeout: int
) -> BaseLLMAdapter:
"""
工厂函数:根据 interface_format 返回不同的适配器实例。
"""
if interface_format.lower() == "deepseek":
return DeepSeekAdapter(api_key, base_url, model_name, max_tokens, temperature, timeout)
elif interface_format.lower() == "openai":
return OpenAIAdapter(api_key, base_url, model_name, max_tokens, temperature, timeout)
elif interface_format.lower() == "azure openai":
return AzureOpenAIAdapter(api_key, base_url, model_name, max_tokens, temperature, timeout)
elif interface_format.lower() == "ollama":
return OllamaAdapter(api_key, base_url, model_name, max_tokens, temperature, timeout)
elif interface_format.lower() == "ml studio":
return MLStudioAdapter(api_key, base_url, model_name, max_tokens, temperature, timeout)
else:
raise ValueError(f"Unknown interface_format: {interface_format}")