forked from radimspetlik/hr-cnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest-extractor-training.py
248 lines (197 loc) · 10.8 KB
/
test-extractor-training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
'''Pytorch training procedure of the SNR extractor with CrossEntropy loss
Usage:
%(prog)s [--net-architecture=<string>]
[--batch-size=<int>] [--test-batch-size=<int>] [--epochs=<int>]
[--lr=<float>] [--momentum=<float>] [--no-cuda]
[--plot-after=<int>]
[--x-lmdb-path-train=<path>]
[--y-lmdb-path-train=<path>]
[--x-lmdb-path-validation=<path>]
[--y-lmdb-path-validation=<path>]
[--output-to=<path>] [--continue-model=<path>]
[--plots-path=<path>]
[--seed=<int>]
%(prog)s (--help | -h)
Options:
--net-architecture=<string> net architecture to test
--batch-size=<int> input batch size for training [default: 64]
--test-batch-size=<int> input batch size for testing [default: 128]
--epochs=<int> number of epochs to train [default: 10]
--lr=<float> learning rate [default: 0.01]
--momentum=<float> SGD momentum [default: 0.5]
--seed=<int> random seed [default: 1]
--plot-after=<int> number of epochs after which the test signal with estimation will be plotted [default: 500]
--x-lmdb-path-train=<path> X LMDB training DB
--y-lmdb-path-train=<path> y LMDB training DB
--x-lmdb-path-validation=<path> X LMDB validation DB
--y-lmdb-path-validation=<path> y LMDB validation DB
--output-to=<path> absolute path to the directory where the model should be stored
--continue-model=<path> absolute path to the directory where the model with which the learning should be continued
--plots=<path> absolute path to the directory where the plots should be stored
--no-cuda disables CUDA training
-h, --help should be help but none is given
See '%(prog)s --help' for more information.
'''
from __future__ import print_function
from PIL import Image
from cmp.nrppg.torch.TorchLossComputer import TorchLossComputer
import sys
import logging
from docopt import docopt
import torch
import torch.optim as optim
from torch.autograd import Variable
import datetime
import random
import time
import os.path
import numpy as np
from torchvision import transforms
import socket
__logging_format__ = '[%(levelname)s]%(message)s'
logging.basicConfig(format=__logging_format__, stream=sys.stdout)
logger = logging.getLogger("train_log")
logging.getLogger("train_log").setLevel(logging.INFO)
prog = os.path.basename(sys.argv[0])
completions = dict(
prog=prog,
)
args = docopt(
__doc__ % completions,
argv=sys.argv[1:],
version='SNR estimator',
)
cuda = not bool(args['--no-cuda']) and torch.cuda.is_available()
torch.manual_seed(int(args['--seed']))
if cuda:
torch.cuda.manual_seed(int(args['--seed']))
def train(model_to_train, optimizer, training_epoch):
start = time.time()
model_to_train.train()
train_rmses = []
train_losses = []
train_aes = []
for batch_idx, (data, target) in enumerate(train_loader):
if cuda:
data, target = data.cuda(async=True), target.cuda(async=True)
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model_to_train(data)
# if training_epoch > 0 and training_epoch % int(args['--plot-after']) == 0:
# store_snrs_to_summary(val_ds, batch_idx, output, target, training_epoch)
Fs, regularization_factor = train_ds.get_fps_and_regularization_factor(batch_idx * int(args['--batch-size']))
train_loss, train_rmse, train_ae = TorchLossComputer.cross_entropy_power_spectrum_loss(output, target, Fs, regularization_factor,
cuda=True)
if len(train_rmses) == 0:
train_rmses = train_rmse
train_losses = train_loss
train_aes = train_ae
else:
train_rmses = torch.cat((train_rmses, train_rmse), dim=0)
train_losses = torch.cat((train_losses, train_loss), dim=0)
train_aes = torch.cat((train_aes, train_ae), dim=0)
train_loss.backward()
optimizer.step()
end = time.time()
return train_losses.data.cpu().numpy(), train_rmses.data.cpu().numpy(), train_aes.data.cpu().numpy(), end - start
def validate(model_to_validate, training_epoch):
model_to_validate.eval()
validation_rmses = []
validation_aes = []
validation_losses = []
for batch_idx, (data, target) in enumerate(validation_loader):
if cuda:
data, target = data.cuda(async=True), target.cuda(async=True)
with torch.no_grad():
data, target = Variable(data), Variable(target)
output = model_to_validate(data)
Fs, regularization_factor = train_ds.get_fps_and_regularization_factor(batch_idx * int(args['--batch-size']))
validation_loss, validation_rmse, validation_ae = TorchLossComputer.cross_entropy_power_spectrum_loss(output,
target, Fs, regularization_factor,
cuda=True)
if len(validation_rmses) == 0:
validation_rmses = validation_rmse
validation_losses = validation_loss
validation_aes = validation_ae
else:
validation_rmses = torch.cat((validation_rmses, validation_rmse), dim=0)
validation_losses = torch.cat((validation_losses, validation_loss), dim=0)
validation_aes = torch.cat((validation_aes, validation_ae), dim=0)
return validation_losses.data.cpu().numpy(), validation_rmses.data.cpu().numpy(), validation_aes.data.cpu().numpy()
def load_model_prepare_losses_file():
from cmp.nrppg.cnn.ModelLoader import ModelLoader
epoch_shift = 0
model_name = str(datetime.datetime.now().strftime('%d-%m-%Y_%H-%M-%S-%f')) + '_' + basename
# dynamically initialize net architecture
if args['--continue-model'] is not None:
# change model name
model_name = args['--continue-model'].split('/')[-1]
epoch_string = model_name.split('_')[-1].split('=')[-1]
epoch_shift = int(epoch_string) + 1
model_name = '_'.join(model_name.split('_')[:-1])
from cmp.nrppg.cnn.ModelLoader import ModelLoader
model, rgb = ModelLoader.load_model(args['--continue-model'])
else:
# logger.info(args['--net-architecture'])
model, rgb = ModelLoader.initialize_model(args['--net-architecture'], model_type='extractor')
if cuda:
model.cuda()
losses_filepath = args['--output-to'] + model_name + '_losses.npy'
losses = np.zeros((int(args['--epochs']) + 1, 12))
if os.path.isfile(losses_filepath):
losses = np.load(losses_filepath)
if losses.shape[0] != int(args['--epochs']) + 1:
oldl = losses
losses = np.zeros((int(args['--epochs']) + 1, 12))
losses[:oldl.shape[0], :] = oldl
return model_name, model, rgb, losses, epoch_shift
def prepare_loaders(rgb):
trnsfm = None
if socket.gethostname() == 'boruvka':
trnsfm = transforms.Compose([transforms.RandomHorizontalFlip(),
transforms.RandomCrop((150, 100)),
transforms.RandomRotation(5, resample=Image.BILINEAR, expand=True),
transforms.CenterCrop((150, 100)),
transforms.Resize((192, 128), interpolation=Image.BILINEAR)])
from cmp.nrppg.cnn.dataset.FaceDatasetLmdb import FaceDatasetLmdb
train_ds = FaceDatasetLmdb(args['--x-lmdb-path-train'], args['--y-lmdb-path-train'], int(args['--batch-size']),
train=True, skip_partitioning=True, rgb=rgb, transform=trnsfm)
val_ds = FaceDatasetLmdb(args['--x-lmdb-path-validation'], args['--y-lmdb-path-validation'], int(args['--batch-size']),
train=False, skip_partitioning=True, rgb=rgb)
train_loader = torch.utils.data.DataLoader(train_ds, batch_size=int(args['--batch-size']), shuffle=False, num_workers=12)
validation_loader = torch.utils.data.DataLoader(val_ds, batch_size=int(args['--batch-size']), shuffle=False, num_workers=6)
return train_loader, validation_loader, train_ds, val_ds
def evaluate_model(model, model_name, losses, epoch_shift):
optimizer = optim.Adam(model.parameters(), lr=float(args['--lr']), weight_decay=0.000)
logger.info(' Learning with the model %s...' % model_name)
validate(model, epoch_shift)
for epoch in range(epoch_shift, int(args['--epochs']) + 1):
trn_losses, trn_RMSEs, trn_AEs, training_time = train(model, optimizer, epoch)
val_losses, val_RMSEs, val_AEs = validate(model, epoch)
logger.info(
'[%04d][TRN] %.6f MAE: %.1f MSE: %.1f, %.1f (%.0fs)' % (epoch, trn_losses.mean(), trn_AEs.mean(), trn_RMSEs.mean(), trn_RMSEs.max(), training_time))
logger.info('[%04d][VAL] %.6f MAE: %.1f MSE: %.1f, %.1f' % (epoch, val_losses.mean(), val_AEs.mean(), val_RMSEs.mean(), val_RMSEs.max()))
losses[epoch, :] = [trn_losses.mean(), np.median(trn_losses),
val_losses.mean(), np.median(val_losses),
trn_RMSEs.mean(), np.median(trn_RMSEs), trn_RMSEs.max(),
val_RMSEs.mean(), np.median(val_RMSEs), val_RMSEs.max(),
trn_AEs.mean(), val_AEs.mean()]
if epoch > 0:
if losses[epoch, 10] < losses[:epoch, 10].min():
torch.save(model.state_dict(), os.path.join(args['--output-to'], model_name + '_epoch=%d_val_mae_best' % epoch))
if losses[epoch, 2] < losses[:epoch, 2].min():
torch.save(model.state_dict(),
os.path.join(args['--output-to'], model_name + '_epoch=%d_val_avg_loss_best' % epoch))
return losses
if __name__ == '__main__':
hr_directory = os.path.join('data')
torch.manual_seed(0)
random.seed(0)
additional_info = '_ecg-fitness'
basename = 'arch=%s_lr=%.0E_batch-size=%d%s' % (
args['--net-architecture'], float(args['--lr']), int(args['--batch-size']), additional_info)
logger.info(' %s' % basename)
model_name, model, rgb, losses, epoch_shift = load_model_prepare_losses_file()
train_loader, validation_loader, train_ds, val_ds = prepare_loaders(rgb)
losses = evaluate_model(model, model_name, losses, epoch_shift)
logger.info('Succesfully finished...')