-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiterative_pruning.py
520 lines (400 loc) · 25.5 KB
/
iterative_pruning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import numpy as np
import time
from prune_utils import prune_fc_like, get_prune_index_ratio, \
get_prune_index_target, L1_criterion, L2_criterion, random_criterion, \
gng_criterion, init_from_pretrained, create_conv_tensor, create_new_bn, in_place_load_state_dict, molchanov_criterion
from visdom_logger import VisdomLogger
from thop import profile
from common_model import Net
import functools
import torchvision.models as models
from utils import ParameterType, eval, train, LoggerForSacred
from custom_models import alexnet, VGG_CIFAR
import torchvision
from model_adapters import EasyNetAdapter, AlexNetAdapter, ResNetAdapter, VGG16Adapter
import pgp
import pickle
import os
import copy
import collections
from experiments.metrics_from_mongo import get_original_num_of_filters
import resnet_cifar
def finalize_weakest_list(l, model, model_adapter):
prune_name_dict = {}
for i, e in enumerate(l):
if not e[0] in prune_name_dict:
prune_name_dict[e[0]] = [e[0], torch.LongTensor([e[1]]), e[2]]
else:
a = torch.LongTensor([e[1]])
param_type, tensor_index, layer_index, block_index = model_adapter.get_param_type_and_layer_index(e[0])
conv_tensor = model_adapter.get_layer(model, param_type, tensor_index, layer_index, block_index)
keep_i = torch.cat((prune_name_dict[e[0]][1], a))
if conv_tensor.out_channels > keep_i.shape[0]:
prune_name_dict[e[0]][1] = keep_i
return prune_name_dict
def insert_sort_list(l, value,name, index, is_downsample, prune_each_steps):
#name, index, downsample, value
if len(l) == 0:
l.append((name, index, is_downsample, value))
return l
for i,e in enumerate(l):
if value <= e[3]:
l.insert(i, [name, index, is_downsample, value])
if len(l) > prune_each_steps:
l = l[:prune_each_steps]
return l
if len(l) < prune_each_steps:
l.append([name, index, is_downsample, value])
return l
def iterative_pruning(epochs_fn, target_prune, prune_each_steps, test_loader,
criterion_func, **kwargs):
model = kwargs["model"]
cuda = kwargs["cuda"]
train_loader = kwargs["train_loader"]
train_ratio = kwargs["train_ratio"]
model_adapter = kwargs["model_adapter"]
is_break = kwargs["is_break"]
loss_acc = []
type_list = []
finished_list = False
model_architecture = {}
optimizer = kwargs["optimizer"]
key_pts = np.asarray([0.3, 0.5, 0.7, 0.9])
ki = 0
logger = kwargs["logger"]
if not "logger_id" in kwargs:
logger_id = ""
else:
logger_id = kwargs["logger_id"]
original_num_filers = get_original_num_of_filters(model, model_adapter)
target_num_prune = int(original_num_filers * target_prune / prune_each_steps)
key_pts = key_pts * original_num_filers
removed_filter_total = 0
removed_parameters_total = 0
for num_of_removed in range(1, target_num_prune + 1):
prune_index_dict, values_indexes = criterion_func(**kwargs)
out_channels_keep_indexes = []
in_channels_keep_indexes = []
original_out_channels = 0
first_fc = False
current_ids = {}
start_index = None
last_start_conv = None
last_keep_index = None
weakest_by_name = {}
weakest_val = 999999999
list_name_param = []
weakest_list = []
for k, v in values_indexes.items():
param_type, tensor_index, layer_index, block_index = model_adapter.get_param_type_and_layer_index(k)
if len(v.shape) == 0 or v.shape[0] == 1 or (tensor_index == 2 and layer_index != -1):
continue
limit = prune_each_steps if v.shape[0] > prune_each_steps else v.shape[0]
for i in range(v[:limit].shape[0]):
if param_type == ParameterType.DOWNSAMPLE_WEIGHTS:
_, conv2_name = model_adapter.get_conv2_from_downsample(model, layer_index, block_index)
weakest_list = insert_sort_list(weakest_list, v[i], conv2_name, prune_index_dict[k][i], True, prune_each_steps)
else:
weakest_list = insert_sort_list(weakest_list, v[i], k, prune_index_dict[k][i], False,
prune_each_steps)
prune_name_dict = finalize_weakest_list(weakest_list, model, model_adapter)
for name, parameters in model.named_parameters():
current_ids[name] = id(parameters)
param_type, tensor_index, layer_index, block_index = model_adapter.get_param_type_and_layer_index(name)
if not finished_list:
type_list.append(param_type)
list_name_param.append(name)
if layer_index == -1:
# Handling CNN and BN before Resnet
if param_type == ParameterType.CNN_WEIGHTS:
conv_tensor = model_adapter.get_layer(model, param_type, tensor_index, layer_index, block_index)
original_out_channels = parameters.shape[0] # conv_tensor.out_channels
reset_index = None
if not prune_name_dict is None and name in prune_name_dict:
_, filtered_index, _ = prune_name_dict[name]
original_index = torch.arange(0, original_out_channels)
mask = torch.ones_like(original_index)
mask[filtered_index] = 0
keep_index = original_index[mask.nonzero()].squeeze()
if original_index.shape[0] - filtered_index.shape[0] == 0:
keep_index = torch.arange(0, original_out_channels).long()
elif original_index.shape[0] - filtered_index.shape[0] == 1:
keep_index = torch.LongTensor([keep_index])
else:
keep_index = torch.arange(0, original_out_channels).long()
new_conv_tensor = create_conv_tensor(conv_tensor, out_channels_keep_indexes, None,
keep_index, reset_index).to(cuda)
model_adapter.set_layer(model, param_type, new_conv_tensor, tensor_index, layer_index, block_index)
if name not in model_architecture:
model_architecture[name] = []
model_architecture[name].append(keep_index.shape[0])
start_index = (keep_index.sort()[0], reset_index)
in_c = conv_tensor.in_channels
if len(out_channels_keep_indexes) != 0:
in_c = out_channels_keep_indexes[-1].shape[0]
removed_parameters_total += (original_out_channels - keep_index.shape[0]) * \
in_c * parameters[2:].numel()
removed_filter_total += original_out_channels - keep_index.shape[0]
if out_channels_keep_indexes is not None and len(out_channels_keep_indexes) != 0:
in_channels_keep_indexes.append(out_channels_keep_indexes[-1].sort()[0])
else:
in_channels_keep_indexes.append(None)
out_channels_keep_indexes.append(keep_index.sort()[0])
elif param_type == ParameterType.CNN_BIAS:
in_channels_keep_indexes.append(out_channels_keep_indexes[-1].sort()[0])
out_channels_keep_indexes.append(out_channels_keep_indexes[-1])
elif param_type == ParameterType.BN_WEIGHT:
bn_tensor = model_adapter.get_layer(model, param_type, tensor_index, layer_index, block_index)
keep_index = out_channels_keep_indexes[-1]
n_bn = create_new_bn(bn_tensor, keep_index, None)
model_adapter.set_layer(model, param_type, n_bn, tensor_index, layer_index, block_index)
del bn_tensor
torch.cuda.empty_cache()
if out_channels_keep_indexes is not None or len(out_channels_keep_indexes) != 0:
in_channels_keep_indexes.append(out_channels_keep_indexes[-1].sort()[0])
out_channels_keep_indexes.append(keep_index.sort()[0])
elif param_type == ParameterType.BN_BIAS:
if out_channels_keep_indexes is not None or len(out_channels_keep_indexes) != 0:
in_channels_keep_indexes.append(out_channels_keep_indexes[-1].sort()[0])
out_channels_keep_indexes.append(keep_index.sort()[0])
elif param_type == ParameterType.FC_WEIGHTS and first_fc == False:
fc_tensor = model_adapter.get_layer(model, param_type, tensor_index, layer_index, block_index)
new_fc_weight = prune_fc_like(fc_tensor.weight.data, out_channels_keep_indexes[-1],
original_out_channels)
new_fc_bias = None
if fc_tensor.bias is not None:
new_fc_bias = fc_tensor.bias.data
new_fc_tensor = nn.Linear(new_fc_weight.shape[1], new_fc_weight.shape[0],
bias=new_fc_bias is not None).to(cuda)
new_fc_tensor.weight.data = new_fc_weight
if fc_tensor.bias is not None:
new_fc_tensor.bias.data = new_fc_bias
model_adapter.set_layer(model, param_type, new_fc_tensor, tensor_index, layer_index, block_index)
del fc_tensor
torch.cuda.empty_cache()
first_fc = True
finished_list = True
else:
if param_type == ParameterType.CNN_WEIGHTS:
if tensor_index == 1:
conv_tensor = model_adapter.get_layer(model, param_type, tensor_index, layer_index, block_index)
original_out_channels = parameters.shape[0] # conv_tensor.out_channels
reset_index = None
if not prune_name_dict is None and name in prune_name_dict:
_, filtered_index, _ = prune_name_dict[name]
original_index = torch.arange(0, original_out_channels)
mask = torch.ones_like(original_index)
mask[filtered_index] = 0
keep_index = original_index[mask.nonzero()].squeeze()
if original_index.shape[0] - filtered_index.shape[0] == 0:
keep_index = torch.arange(0, original_out_channels).long()
elif original_index.shape[0] - filtered_index.shape[0] == 1:
keep_index = torch.LongTensor([keep_index])
else:
keep_index = torch.arange(0, original_out_channels).long()
new_conv_tensor = create_conv_tensor(conv_tensor, out_channels_keep_indexes, None,
keep_index, reset_index).to(cuda)
model_adapter.set_layer(model, param_type, new_conv_tensor, tensor_index, layer_index,
block_index)
if name not in model_architecture:
model_architecture[name] = []
model_architecture[name].append(keep_index.shape[0])
in_c = conv_tensor.in_channels
if len(out_channels_keep_indexes) != 0:
in_c = out_channels_keep_indexes[-1].shape[0]
removed_parameters_total += (original_out_channels - keep_index.shape[0]) * \
in_c * parameters[2:].numel()
removed_filter_total += original_out_channels - keep_index.shape[0]
if out_channels_keep_indexes is not None and len(out_channels_keep_indexes) != 0:
in_channels_keep_indexes.append(out_channels_keep_indexes[-1].sort()[0])
out_channels_keep_indexes.append(keep_index.sort()[0])
elif tensor_index == 2:
downsample_cnn, d_name = model_adapter.get_downsample(model, layer_index, block_index)
if downsample_cnn is not None:
original_out_channels = parameters.shape[0] # conv_tensor.out_channels
last_keep_index, _ = start_index
reset_index = None
if not prune_name_dict is None and name in prune_name_dict and prune_name_dict[name][2]:
_, filtered_index, _ = prune_name_dict[name]
original_index = torch.arange(0, original_out_channels)
mask = torch.ones_like(original_index)
mask[filtered_index] = 0
keep_index = original_index[mask.nonzero()].squeeze()
if original_index.shape[0] - filtered_index.shape[0] == 0:
keep_index = torch.arange(0, original_out_channels).long()
elif original_index.shape[0] - filtered_index.shape[0] == 1:
keep_index = torch.LongTensor([keep_index])
else:
keep_index = torch.arange(0, original_out_channels).long()
last_start_conv = create_conv_tensor(downsample_cnn, [last_keep_index], None,
keep_index, reset_index).to(cuda)
last_start_conv = [last_start_conv, 0, layer_index, block_index]
if d_name not in model_architecture:
model_architecture[d_name] = []
model_architecture[d_name].append(keep_index.shape[0])
start_index = (keep_index.sort()[0], reset_index)
removed_parameters_total += (original_out_channels - keep_index.shape[0]) * \
last_keep_index.shape[0] * parameters[2:].numel()
removed_filter_total += original_out_channels - keep_index.shape[0]
original_out_channels = parameters.shape[0]
conv_tensor = model_adapter.get_layer(model, param_type, tensor_index, layer_index, block_index)
keep_index, reset_index = start_index
new_conv_tensor = create_conv_tensor(conv_tensor, out_channels_keep_indexes, None,
keep_index, reset_index).to(cuda)
model_adapter.set_layer(model, param_type, new_conv_tensor, tensor_index, layer_index,
block_index)
if out_channels_keep_indexes is not None and len(out_channels_keep_indexes) != 0:
in_channels_keep_indexes.append(out_channels_keep_indexes[-1].sort()[0])
removed_parameters_total += (original_out_channels - keep_index.shape[0]) * \
out_channels_keep_indexes[-1].shape[0] * parameters[2:].numel()
removed_filter_total += original_out_channels - keep_index.shape[0]
out_channels_keep_indexes.append(keep_index.sort()[0])
if name not in model_architecture:
model_architecture[name] = []
model_architecture[name].append(keep_index.shape[0])
elif param_type == ParameterType.DOWNSAMPLE_WEIGHTS:
last_start_conv, tensor_index, layer_index, block_index = last_start_conv
model_adapter.set_layer(model, ParameterType.DOWNSAMPLE_WEIGHTS, last_start_conv, tensor_index,
layer_index,
block_index)
keep_index, reset_index = start_index
in_channels_keep_indexes.append(last_keep_index.sort()[0])
out_channels_keep_indexes.append(keep_index.sort()[0])
elif param_type == ParameterType.BN_WEIGHT:
bn_tensor = model_adapter.get_layer(model, param_type, tensor_index, layer_index, block_index)
keep_index = out_channels_keep_indexes[-1]
n_bn = create_new_bn(bn_tensor, keep_index, reset_index)
model_adapter.set_layer(model, param_type, n_bn, tensor_index, layer_index, block_index)
in_channels_keep_indexes.append(out_channels_keep_indexes[-1].sort()[0])
out_channels_keep_indexes.append(keep_index.sort()[0])
elif param_type == ParameterType.BN_BIAS:
in_channels_keep_indexes.append(out_channels_keep_indexes[-1].sort()[0])
out_channels_keep_indexes.append(keep_index.sort()[0])
elif param_type == ParameterType.DOWNSAMPLE_BN_W:
bn_tensor = model_adapter.get_layer(model, param_type, tensor_index, layer_index, block_index)
keep_index, reset_index = start_index
n_bn = create_new_bn(bn_tensor, keep_index, reset_index)
model_adapter.set_layer(model, param_type, n_bn, tensor_index, layer_index, block_index)
in_channels_keep_indexes.append(out_channels_keep_indexes[-1].sort()[0])
out_channels_keep_indexes.append(keep_index.sort()[0])
elif param_type == ParameterType.DOWNSAMPLE_BN_B:
keep_index, reset_index = start_index
in_channels_keep_indexes.append(out_channels_keep_indexes[-1].sort()[0])
out_channels_keep_indexes.append(keep_index.sort()[0])
elif param_type == ParameterType.CNN_BIAS:
in_channels_keep_indexes.append(out_channels_keep_indexes[-1].sort()[0])
out_channels_keep_indexes.append(out_channels_keep_indexes[-1])
if num_of_removed > 1:
new_old_ids = {}
new_ids = {}
for k, v in model.named_parameters():
new_id = id(v)
new_ids[k] = new_id
new_old_ids[new_id] = current_ids[k]
o_state_dict = optimizer.state_dict()
optimizer = optim.SGD(model.parameters(), lr=optimizer.param_groups[0]["lr"],
momentum=optimizer.param_groups[0]["momentum"])
n_new_state_dict = optimizer.state_dict()
for k in n_new_state_dict["param_groups"][0]["params"]:
old_id = new_old_ids[k]
old_momentum = o_state_dict["state"][old_id]
n_new_state_dict["state"][k] = old_momentum
in_place_load_state_dict(optimizer, n_new_state_dict)
index_op_dict = {}
first_fc = False
for i in range(len(type_list)):
if type_list[i] == ParameterType.FC_WEIGHTS and first_fc == False:
index_op_dict[optimizer.param_groups[0]['params'][i]] = (
type_list[i], out_channels_keep_indexes[i - 1], None, None)
first_fc = True
elif type_list[i] == ParameterType.FC_BIAS:
continue
elif type_list[i] == ParameterType.DOWNSAMPLE_BN_B or type_list[i] == ParameterType.DOWNSAMPLE_BN_W or \
type_list[i] == ParameterType.BN_BIAS or type_list[i] == ParameterType.BN_WEIGHT:
index_op_dict[optimizer.param_groups[0]['params'][i]] = (
type_list[i], out_channels_keep_indexes[i], None, None)
else:
index_op_dict[optimizer.param_groups[0]['params'][i]] = (
type_list[i], out_channels_keep_indexes[i], None, in_channels_keep_indexes[i])
for k, v in index_op_dict.items():
if v[0] == ParameterType.CNN_WEIGHTS or v[0] == ParameterType.DOWNSAMPLE_WEIGHTS:
if v[3] is not None:
optimizer.state[k]["momentum_buffer"] = optimizer.state[k]["momentum_buffer"][:, v[3], :, :]
optimizer.state[k]['momentum_buffer'] = optimizer.state[k]['momentum_buffer'][v[1], :, :, :]
elif v[0] == ParameterType.CNN_BIAS or v[0] == ParameterType.BN_WEIGHT or v[0] == ParameterType.BN_BIAS \
or v[0] == ParameterType.DOWNSAMPLE_BN_W or v[0] == ParameterType.DOWNSAMPLE_BN_B:
optimizer.state[k]['momentum_buffer'] = optimizer.state[k]['momentum_buffer'][v[1]]
else:
optimizer.state[k]['momentum_buffer'] = \
prune_fc_like(optimizer.state[k]['momentum_buffer'], v[1], original_out_channels)
if num_of_removed == 1:
optimizer = optim.SGD(model.parameters(), lr=optimizer.param_groups[0]['lr'], momentum=optimizer.param_groups[0]['momentum'])
torch.cuda.empty_cache()
for epoch in range(1, epochs_fn):
model.train()
optimizer.zero_grad()
total_loss = train(model, optimizer, cuda, train_loader,is_break)
acc = eval(model, cuda, test_loader,is_break)
if logger is not None:
logger.log_scalar("iterative_pruning_{}_after_target_val_acc".format(logger_id), acc, num_of_removed)
logger.log_scalar("iterative_pruning_{}_number of filter removed", removed_filter_total, epoch)
logger.log_scalar("iterative_pruning_{}_acc_number of filter removed".format(logger_id), acc, removed_filter_total)
logger.log_scalar("iterative_pruning_{}_acc_parameters_removed".format(logger_id), acc,
removed_parameters_total)
#print("{}:{}:{}".format(removed_filter_total, key_pts[ki], original_num_filers))
if ki < key_pts.shape[0] and removed_filter_total >= key_pts[ki]:
flops, params = profile(model, input_size=train_loader.dataset[0][0].unsqueeze(0).shape)
logger.log_scalar("iterative_pruning_{}_flops_counts".format(logger_id), flops, key_pts[ki])
logger.log_scalar("iterative_pruning_{}_params_counts".format(logger_id), params, key_pts[ki])
ki += 1
loss_acc.append((total_loss / len(train_loader), acc))
if removed_filter_total > target_prune * original_num_filers:
print("{}/{}".format(removed_filter_total, original_num_filers))
break
#print("{}:{}/{}".format(num_of_removed,removed_total, original_num_filers))
flops, params = profile(model, input_size=train_loader.dataset[0][0].unsqueeze(0).shape)
logger.log_scalar("iterative_pruning_{}_flops_counts".format(logger_id), flops, key_pts[-1])
logger.log_scalar("iterative_pruning_{}_params_counts".format(logger_id), params, key_pts[-1])
return loss_acc, model_architecture
if __name__ == "__main__":
cuda = torch.device("cuda")
batch_size = 128
test_batch_size = 128
lr = 0.01
momentum = 0.9
transform_train = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=0)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=test_batch_size, shuffle=False, num_workers=0)
model = resnet_cifar.resnet56_cifar().to(cuda)
#model = VGG_CIFAR().to(cuda)
logger = VisdomLogger(port=10999)
logger = LoggerForSacred(logger)
if not os.path.exists("resnet56_trained_cifar10.p"):
optimizer_b = optim.SGD(model.parameters(), lr=lr, momentum=momentum)
for epoch in range(1, 20 + 1):
model.train()
train(model, optimizer_b, cuda, trainloader, True)
torch.save(model, "resnet56_trained_cifar10.p")
model = torch.load("resnet56_trained_cifar10.p").to(cuda)
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)
loss_acc, model_architecture = iterative_pruning(2, 0.9, 5, testloader, L1_criterion, cuda=cuda, model=model,
optimizer=optimizer,
train_loader=trainloader,
train_ratio=1,
initializer_fn=None,
model_adapter=ResNetAdapter(), is_break=True, logger=logger)