forked from OpenPIV/openpiv-matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
normxcorr2_general.m
373 lines (307 loc) · 12.2 KB
/
normxcorr2_general.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
function [C,numberOfOverlapPixels] = normxcorr2_general(varargin)
%NORMXCORR2_GENERAL Normalized two-dimensional cross-correlation.
% [C,numberOfOverlapPixels] = NORMXCORR2_GENERAL(TEMPLATE,A) computes the
% normalized cross-correlation of matrices TEMPLATE and A. The resulting
% matrix C contains correlation coefficients and its values may range
% from -1.0 to 1.0.
%
% [C,numberOfOverlapPixels] =
% NORMXCORR2_GENERAL(TEMPLATE,A,requiredNumberOfOverlapPixels) sets to 0
% all locations in C computed from positions where A and T overlap less
% than requiredNumberOfOverlapPixels.
% Larger values of requiredNumberOfOverlapPixels zero-out pixels on a
% larger border around C.
% Thus, larger values remove less stable computations but also limit the
% capture range.
% If the template is smaller than the image and it is desired that the
% computation only be carried out when the template is fully overlapping
% the image, requiredNumberOfOverlapPixels should be set to
% numel(template).
% The default is set to 0, meaning no modifications to C.
%
% Limitations of normxcorr2:
% The documentation of normxcorr2 states that, "The matrix A must be
% larger than the matrix TEMPLATE for the normalization to be
% meaningful." It is implemented following the details of the paper "Fast
% Normalized Cross-Correlation", by J. P. Lewis, Industrial Light &
% Magic. This approach assumes the template is small relative to the
% image and proceeds to calculate the normalization across the entire
% template. This leads to correct computations wherever the template is
% wholly overlapping with the image, but the computation is incorrect in
% the borders of the output (the border size is proportional to the
% template size). This problem is therefore worse for larger templates
% to the point that, when the template is the same size as the image, the
% only correct value is at the center pixel (where the images are fully
% overlapping). Thus, if normxcorr2 is used for such things as
% registering images of the same size, the result will be incorrect.
%
% The new normxcorr2_general:
% normxcorr2_general is more general than normxcorr2 in that it gives
% correct results everywhere regardless of the relative size of A and
% TEMPLATE. It accomplishes this by computing the normalized correlation
% only in the overlap regions between the two matrices. Thus, the result
% is correct for all locations of correlation. The result is the same as
% if the NCC were carried out in the spatial domain (which would take a
% long time to compute for large matrices).
%
% Class Support
% -------------
% The input matrices can be numeric. The output matrix C is double.
%
% Example
% -------
% This example correlates an input with itself using normxcorr2 (the
% built-in Matlab version) and normxcorr2_general (the general version).
% Because the template is not small compared with the input image (they
% are the same size in this case), the output of normxcorr2.m is
% incorrect for most pixels. On the other hand, the general version is
% correct at all locations, which can be easily verified analytically or
% visually.
%
% Note that the image processing toolbox (IPT) is needed to run this
% example since normxcorr2 is part of that toolbox. However,
% normxcorr2_general does not require the IPT.
%
% input = repmat([1:6 5:-1:1],11,1);
% normxcorr2_output = normxcorr2(input,input);
% normxcorr2_general_output = normxcorr2_general(input,input);
% figure;
% subplot(2,2,1), imagesc(input); title('Input pattern');
% subplot(2,2,3), imagesc(normxcorr2_output); title('Output of Matlab built-in normxcorr2');
% subplot(2,2,4), imagesc(normxcorr2_general_output); title('Output of normxcorr2\_general');
%
% See also NORMXCORR2.
%
% References: Dirk Padfield. "Masked FFT registration". In Proc. Computer
% Vision and Pattern Recognition, 2010.
%
% Author: Dirk Padfield, GE Global Research, [email protected]
%
% Input-output specs
% ------------------
% T: 2-D, real, full matrix
% logical, uint8, uint16, or double
% no NaNs, no Infs
% prod(size(T)) >= 2
%
% A: 2-D, real, full matrix
% logical, uint8, uint16, or double
% no NaNs, no Infs
% prod(size(A)) >= 2
%
% C: double
[T, A, requiredNumberOfOverlapPixels] = ParseInputs(varargin{:});
sizeA = size(A);
sizeT = size(T);
% Find the number of pixels used for the calculation as the two images are
% correlated. The size of this image will be the same as the correlation
% image.
numberOfOverlapPixels = local_sum(ones(sizeA),sizeT(1),sizeT(2));
local_sum_A = local_sum(A,sizeT(1),sizeT(2));
local_sum_A2 = local_sum(A.*A,sizeT(1),sizeT(2));
% Note: diff_local_sums should be nonnegative, but it may have negative
% values due to round off errors. Below, we use max to ensure the radicand
% is nonnegative.
diff_local_sums_A = ( local_sum_A2 - (local_sum_A.^2)./ numberOfOverlapPixels );
clear local_sum_A2;
denom_A = max(diff_local_sums_A,0);
clear diff_local_sums_A;
% Flip T in both dimensions so that its correlation can be more easily
% handled.
rotatedT = rot90(T,2);
local_sum_T = local_sum(rotatedT,sizeA(1),sizeA(2));
local_sum_T2 = local_sum(rotatedT.*rotatedT,sizeA(1),sizeA(2));
clear rotatedT;
diff_local_sums_T = ( local_sum_T2 - (local_sum_T.^2)./ numberOfOverlapPixels );
clear local_sum_T2;
denom_T = max(diff_local_sums_T,0);
clear diff_local_sums_T;
denom = sqrt(denom_T .* denom_A);
clear denom_T denom_A;
xcorr_TA = xcorr2_fast(T,A);
clear A T;
numerator = xcorr_TA - local_sum_A .* local_sum_T ./ numberOfOverlapPixels;
clear xcorr_TA local_sum_A local_sum_T;
% denom is the sqrt of the product of positive numbers so it must be
% positive or zero. Therefore, the only danger in dividing the numerator
% by the denominator is when dividing by zero. We know denom_T~=0 from
% input parsing; so denom is only zero where denom_A is zero, and in these
% locations, C is also zero.
C = zeros(size(numerator));
tol = 1000*eps( max(abs(denom(:))) );
i_nonzero = find(denom > tol);
C(i_nonzero) = numerator(i_nonzero) ./ denom(i_nonzero);
clear numerator denom;
% Remove the border values since they result from calculations using very
% few pixels and are thus statistically unstable.
% By default, requiredNumberOfOverlapPixels = 0, so C is not modified.
if( requiredNumberOfOverlapPixels > max(numberOfOverlapPixels(:)) )
error(['ERROR: requiredNumberOfOverlapPixels ' num2str(requiredNumberOfOverlapPixels) ...
' must not be greater than the maximum number of overlap pixels ' ...
num2str(max(numberOfOverlapPixels(:))) '.']);
end
C(numberOfOverlapPixels < requiredNumberOfOverlapPixels) = 0;
%-------------------------------
% Function local_sum
%
function local_sum_A = local_sum(A,m,n)
% This algorithm depends on precomputing running sums.
% If m,n are equal to the size of A, a faster method can be used for
% calculating the local sum. Otherwise, the slower but more general method
% can be used. The faster method is more than twice as fast and is also
% less memory intensive.
if( m == size(A,1) && n == size(A,2) )
s = cumsum(A,1);
c = [s; repmat(s(end,:),m-1,1) - s(1:end-1,:)];
s = cumsum(c,2);
clear c;
local_sum_A = [s, repmat(s(:,end),1,n-1) - s(:,1:end-1)];
else
% Break the padding into parts to save on memory.
B = zeros(size(A,1)+2*m,size(A,2));
B(m+1:m+size(A,1),:) = A;
s = cumsum(B,1);
c = s(1+m:end-1,:)-s(1:end-m-1,:);
d = zeros(size(c,1),size(c,2)+2*n);
d(:,n+1:n+size(c,2)) = c;
s = cumsum(d,2);
local_sum_A = s(:,1+n:end-1)-s(:,1:end-n-1);
end
%-------------------------------
% Function xcorr2_fast
%
function cross_corr = xcorr2_fast(T,A)
T_size = size(T);
A_size = size(A);
outsize = A_size + T_size - 1;
% Figure out when to use spatial domain vs. freq domain
conv_time = time_conv2(T_size,A_size); % 1 conv2
fft_time = 3*time_fft2(outsize); % 2 fft2 + 1 ifft2
if (conv_time < fft_time)
cross_corr = conv2(rot90(T,2),A);
else
cross_corr = freqxcorr(T,A,outsize);
end
%-------------------------------
% Function freqxcorr
%
function xcorr_ab = freqxcorr(a,b,outsize)
% Find the next largest size that is a multiple of a combination of 2, 3,
% and/or 5. This makes the FFT calculation much faster.
optimalSize(1) = FindClosestValidDimension(outsize(1));
optimalSize(2) = FindClosestValidDimension(outsize(2));
% Calculate correlation in frequency domain
Fa = fft2(rot90(a,2),optimalSize(1),optimalSize(2));
Fb = fft2(b,optimalSize(1),optimalSize(2));
xcorr_ab = real(ifft2(Fa .* Fb));
xcorr_ab = xcorr_ab(1:outsize(1),1:outsize(2));
%-------------------------------
% Function time_conv2
%
function time = time_conv2(obssize,refsize)
% time a spatial domain convolution for 10-by-10 x 20-by-20 matrices
% a = ones(10);
% b = ones(20);
% mintime = 0.1;
% t1 = cputime;
% t2 = t1;
% k = 0;
% while (t2-t1)<mintime
% c = conv2(a,b);
% k = k + 1;
% t2 = cputime;
% end
% t_total = (t2-t1)/k;
% % convolution time = K*prod(size(a))*prod(size(b))
% % t_total = K*10*10*20*20 = 40000*K
% K = t_total/40000;
% K was empirically calculated by the commented-out code above.
K = 2.7e-8;
% convolution time = K*prod(obssize)*prod(refsize)
time = K*prod(obssize)*prod(refsize);
%-------------------------------
% Function time_fft2
%
function time = time_fft2(outsize)
% time a frequency domain convolution by timing two one-dimensional ffts
R = outsize(1);
S = outsize(2);
% Tr = time_fft(R);
% K_fft = Tr/(R*log(R));
% K_fft was empirically calculated by the 2 commented-out lines above.
K_fft = 3.3e-7;
Tr = K_fft*R*log(R);
if S==R
Ts = Tr;
else
% Ts = time_fft(S); % uncomment to estimate explicitly
Ts = K_fft*S*log(S);
end
time = S*Tr + R*Ts;
%-----------------------------------------------------------------------------
function [T, A, requiredNumberOfOverlapPixels] = ParseInputs(varargin)
if( nargin < 2 || nargin > 3 )
error('ERROR: The number of arguments must be either 2 or 3. Please see the documentation for details.');
end
T = varargin{1};
A = varargin{2};
if( nargin == 3 )
requiredNumberOfOverlapPixels = varargin{3};
else
requiredNumberOfOverlapPixels = 0;
end
% The following requires the image processing toolbox, so it is commented
% out here for generality.
%iptcheckinput(T,{'logical','numeric'},{'real','nonsparse','2d','finite'},mfilename,'T',1)
%iptcheckinput(A,{'logical','numeric'},{'real','nonsparse','2d','finite'},mfilename,'A',2)
checkSizesTandA(T,A)
% See geck 342320. If either A or T has a minimum value which is negative, we
% need to shift the array so all values are positive to ensure numerically
% robust results for the normalized cross-correlation.
A = shiftData(A);
T = shiftData(T);
checkIfFlat(T);
%-----------------------------------------------------------------------------
function B = shiftData(A)
B = double(A);
is_unsigned = isa(A,'uint8') || isa(A,'uint16') || isa(A,'uint32');
if ~is_unsigned
min_B = min(B(:));
if min_B < 0
B = B - min_B;
end
end
%-----------------------------------------------------------------------------
function checkSizesTandA(T,A)
if numel(T) < 2
eid = sprintf('Images:%s:invalidTemplate',mfilename);
msg = 'TEMPLATE must contain at least 2 elements.';
error(eid,'%s',msg);
end
%-----------------------------------------------------------------------------
function checkIfFlat(T)
if std(T(:)) == 0
eid = sprintf('Images:%s:sameElementsInTemplate',mfilename);
msg = 'The values of TEMPLATE cannot all be the same.';
error(eid,'%s',msg);
end
%-----------------------------------------------------------------------------
function [newNumber] = FindClosestValidDimension(n)
% Find the closest valid dimension above the desired dimension. This
% will be a combination of 2s, 3s, and 5s.
% Incrementally add 1 to the size until
% we reach a size that can be properly factored.
newNumber = n;
result = 0;
newNumber = newNumber - 1;
while( result ~= 1 )
newNumber = newNumber + 1;
result = FactorizeNumber(newNumber);
end
%-----------------------------------------------------------------------------
function [n] = FactorizeNumber(n)
for ifac = [2 3 5]
while( rem(n,ifac) == 0 )
n = n/ifac;
end
end