-
Notifications
You must be signed in to change notification settings - Fork 0
/
features.py
executable file
·110 lines (87 loc) · 3.03 KB
/
features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
'''
BLINC Adaptive Prosthetics Toolkit
- Bionic Limbs for Improved Natural Control, blinclab.ca
A toolkit for running machine learning experiments on prosthetic limb data
This module handles feature processing
# TODO: time domain features
'''
from sklearn import preprocessing
import numpy as np
import ast
class Filter:
"""
Creates a filter for converting raw inputs into meaningful signals
"""
pass
def strs_to_floats(values):
"""
Converts elements into an array of floats where they've been stored
as a list or dataframe of strings '[0, 0]'
# TODO check the safety of this
"""
strings = '[' + ', '.join(values) + ']'
return np.array(ast.literal_eval(strings))
def scale_matrix(values):
scaler = preprocessing.MinMaxScaler()
return scaler.fit_transform(values)
def get_unitizer(max_class):
def unitizer(label):
x = np.zeros(max_class)
x[label] = 1
return x
return unitizer
def running_mean(data, n):
"""
Take a vector a values and a integer window size
Return the vector of values that are the mean over n steps.
Note that (right now at least) the returned vector will be n-1 elements smaller.
>>> running_mean([1, 2, 2, 4, 1, 1], 2)
array([ 1.5, 2. , 3. , 2.5, 1. ])
>>> running_mean([1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2], 4)
array([ 1. , 1.25, 1.5 , 1.5 , 1.5 , 1.5 , 1.5 , 1.75, 2. ])
"""
return np.convolve(data, np.ones((n, ))/n)[(n-1):-(n-1)]
def calculate_return_series(r, gamma=1, horizon=None):
# TODO: unhack this
return Series(calculate_return(r, gamma=gamma, horizon=horizon))
def calculate_return(r, gamma=1, horizon=None):
"""
Returns a sequence of len(r) using gamma to calculate
the return value.
Should use horizon rather than discounting, will assume r[0:horizon] is the
relevant bit
>>> calculate_return([1, 0, 0], .5)
array([ 1., 0., 0.])
>>> calculate_return([0, 0, 1], .5)
array([ 0.25, 0.5 , 1. ])
>>> calculate_return([0, 1, 0, 0, 0, 1],.5)
array([ 0.53125, 1.0625 , 0.125 , 0.25 , 0.5 , 1. ])
>>> a = calculate_return([0, 0, 1, 1, 0, 0, -1, -1], .1)
>>> a[:5]
array([ 0.0109989, 0.109989 , 1.09989 , 0.9989 , -0.011 ])
>>> a[5:]
array([-0.11, -1.1 , -1. ])
>>> calculate_return([0, 1, 0, 1, 0, 1], horizon=3)
array([1, 2, 1, 2, 1, 1])
>>> calculate_return([0, 1, 0, 1, 0, 1], horizon=6)
array([3, 3, 2, 2, 1, 1])
>>> calculate_return([0, 1, 0, 1, 0, 1], horizon=10)
array([3, 3, 2, 2, 1, 1])
"""
l = len(r)
if l == 0:
return []
if gamma is None or gamma >= 1 or gamma is np.nan:
r = list(r)
ret = [sum(r[i:min(i+horizon, l)]) for i in range(l)]
return np.array(ret)
ret = np.array([0.0]*l)
ret[l-1] = r[l-1]
for i in range(l-2, -1, -1):
ret[i] = r[i] + gamma * ret[i+1]
return ret
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=False)
print("Done!")