-
Notifications
You must be signed in to change notification settings - Fork 0
/
0124. Binary Tree Maximum Path Sum.js
57 lines (51 loc) · 1.32 KB
/
0124. Binary Tree Maximum Path Sum.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
// Given a non-empty binary tree, find the maximum path sum.
//
// For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path must contain at least one node and does not need to go through the root.
//
// Example 1:
//
// Input: [1,2,3]
//
// 1
// / \
// 2 3
//
// Output: 6
//
// Example 2:
//
// Input: [-10,9,20,null,null,15,7]
//
// -10
// / \
// 9 20
// / \
// 15 7
//
// Output: 42
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
/** Recursion */
// Time O(N) where N is number of nodes, since we visit each node not more than 2 times.
// Space O(log(N)). We have to keep a recursion stack of the size of the tree height, which is O(log(N)) for the binary tree.
const maxPathSum = (root) => {
let max = -Infinity;
const getMaxGain = (node) => {
if (node == null) return 0;
const l = Math.max(0, getMaxGain(node.left)); // left max gain. If < 0, returning 0 means ignoring this branch
const r = Math.max(0, getMaxGain(node.right)); // right max gain
max = Math.max(max, node.val + l + r);
return node.val + Math.max(l, r);
};
getMaxGain(root);
return max;
};