-
Notifications
You must be signed in to change notification settings - Fork 0
/
0070. Climbing Stairs.js
84 lines (77 loc) · 1.69 KB
/
0070. Climbing Stairs.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
// You are climbing a stair case. It takes n steps to reach to the top.
//
// Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
//
// Note: Given n will be a positive integer.
//
// Example 1:
//
// Input: 2
// Output: 2
// Explanation: There are two ways to climb to the top.
// 1. 1 step + 1 step
// 2. 2 steps
//
// Example 2:
//
// Input: 3
// Output: 3
// Explanation: There are three ways to climb to the top.
// 1. 1 step + 1 step + 1 step
// 2. 1 step + 2 steps
// 3. 2 steps + 1 step
/**
* @param {number} n
* @return {number}
*/
/** 1) Recursion (time limit exceeded) */
// Time O(2^n) - O(branch ^ recursion depth)
// Space O(n) - O(recursion depth)
const climbStairs1 = (n) => {
if (n < 2) return 1;
return climbStairs(n - 2) + climbStairs(n - 1);
};
/** 2) Recursion (memoization) */
// Time O(n)
// Space O(n)
const climbStairs2 = (n) => {
const map = {};
const go = (n) => {
if (n < 2) return 1;
if (map[n] != null) return map[n];
map[n] = go(n - 2) + go(n - 1);
return map[n];
};
return go(n);
};
/** 3) Dynamic programming - Fibonacci */
// Similar
// 70. Climbing Stairs
// 91. Decode Ways
//
// Time O(n)
// Space O(n)
const climbStairs3 = (n) => {
const dp = [1, 1];
for (let i = 2; i <= n; i++) {
dp[i] = dp[i - 2] + dp[i - 1];
}
return dp[n];
};
/** 4) Dynamic programming - Fibonacci (optimization) */
// Time O(n)
// Space O(1)
const climbStairs = (n) => {
let a = 1;
let b = 1;
for (let i = 2; i <= n; i++) {
const c = a + b;
a = b;
b = c;
}
return b;
};
/** 5) Binet's Fibonacci number formula */
// Time O(log n)
// Space O(1)
// https://leetcode.com/problems/climbing-stairs/solution/