Skip to content

Latest commit

 

History

History
153 lines (114 loc) · 4.39 KB

README.md

File metadata and controls

153 lines (114 loc) · 4.39 KB

Chord detection

This repo contains the code structure for the detection of guitar chords from input images.
The dataset of this project is located in: https://github.com/LincLabUCCS/Albert

Installation (Linux)

Create conda environment

$ conda create -n ENVIRONMENT_NAME python=3
$ conda activate ENVIRONMENT_NAME
$ conda config --add channels conda-forge
$ conda config --add channels pytorch

Clone and install requirements

$ git clone [email protected]:AlbertMitjans/chord-detection.git
$ cd chord-detection/
$ conda install --file requirements.txt

Download pretrained weights

$ cd checkpoints/
$ bash get_weights.sh

If you have compatibility issues use this download link. The content of the zip file should go into a new folder named "best_ckpt" inside the folder checkpoints: checkpoints/best_ckpt/.

Download dataset

$ cd ..
$ cd data/
$ bash get_dataset.sh

If you have compatibility issues use this download link. The content of the zip file should go in the folder data/.

Hourglass network

Run test

Evaluates the model on the dataset. The network outputs 3 heatmaps with the position of the detected frets, strings and fingers.

$ python3 main.py --train False --ckpt checkpoints/best_ckpt/MTL_hourglass.pth

As default, for every image, the input and the output are saved in the output/ folder.

Testing log

FINGERS:        Recall(%): 89.646       Precision(%): 96.970
FRETS:          Recall(%): 96.717       Precision(%): 100.000
STRINGS:        Recall(%): 89.380       Precision(%): 100.000
   

Run train

Trains the pre-trained network from scratch or from a given checkpoint.

$ python3 main.py

Training log

Epoch: [0][10/172]      Loss.avg: 96.6020       Batch time: 0.4998 s    Total time: 0.3796 min
FINGERS:        Recall(%): 50.758       Precision(%): 95.455
FRETS:          Recall(%): 3.636        Precision(%): 0.308
STRINGS:        Recall(%): 1.515        Precision(%): 0.088

Tensorboard

Track training progress in Tensorboard:

  • Initialize training
  • Run the command below inside the chord-detection directory.
  • Go to http://localhost:6006/
$ tensorboard --logdir='logs' --port=6006

Arguments

--train (default:True) : if True/False, training/testing is implemented.
--val_data (default:True) : if True/False, all/validation data will be evaluated.
--save_imgs (default:True) : if True output images will be saved in the \Output folder.
--batch_size (default:1)
--depth (default:True) : if True/False, depth/RGB images will be used.
--ckpt(default:None)
--num_epochs (default:200)

Chord detection

Image detection

Detects the chords played in all the images of the dataset.

$ python3 detect.py --print_tab True --plot_imgs True

Image detection log

image1.jpg:

Tablature:

[[0. 0. 0. 0. 1. 0.]
 [0. 0. 1. 0. 0. 0.]
 [0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0.]]

Target: C  ,  Prediction: C (100%)

Detection precision: 100.0%

Arguments

--folder (default:2) : choose image folder for the detection. The dataset contains three different folders (0, 1 or 2).
--print_tab (default:False) : prints the tablature obtained from the detection.
--plot_imgs (default:False) : plots images of the detection process.
--conf_matrix (default:False) : creates and saves a confusion matrix of the detection of all the images.

Video

Detects the chords of every frame of a video of the dataset and saves the results as a new video.

$ python3 video.py --vid_number 1 --show_animation True

Arguments

--vid_number (default:1) : number of the video to use for the detection. The dataset contains up to 21 different videos.
--show_animation (default:True) : plots the saved frames during the detection process.