1
+ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2
+ % Contents in G.Sfikas library ('sfikasLibrary') %
3
+ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4
+ %
5
+ % Update I: 24 Feb 2009
6
+ % Last update : 20 Jul 2009
7
+ %
8
+ % Not included in this list:
9
+ % /edgemap (Martin)
10
+ % /edgemap/superpixels (Yi Ma)
11
+ % /lightspeed (Minka)
12
+ % /AnalyzeToolbox (Medical imaging toolbox)
13
+ % /mixtureLearning/nombre (Ipse, u.c.)
14
+ %
15
+ %
16
+ % =========================================================================
17
+ % / General functions
18
+ % =========================================================================
19
+ %
20
+ % buildRetrievalIndex Creates a list of all files of a given
21
+ % extension contained on a given folder
22
+ % (including its subfolders).
23
+ % deterministicKmeans A set of centroids is returned for the
24
+ % given dataset, found using k-means. The
25
+ % initialization depends on the data, hence
26
+ % the name 'deterministic'.
27
+ % multistartKmeans Use several random initializations for
28
+ % k-means.
29
+ % gaussianValue Computes the value of a normal distribution
30
+ % for a given datum or set of data.
31
+ % studentValue Computes the value of a Student-t
32
+ % distribution for a given datum of set of
33
+ % data.
34
+ % logGaussianValue Compute the log of "gaussianValue" (more
35
+ % stable)
36
+ % logStudentValue Compute the log of "studentValue" (more
37
+ % stable)
38
+ % mahalanobis Compute the mahalanobis norm for a set of
39
+ % vectors. i.e X'*inv(A)*X (note the inv on
40
+ % the A)
41
+ % squaredist Compute X'A*X, like 'mahanalobis'.
42
+ % makeMovie Show the contents of a 3d image (eg, an
43
+ % MRI) as an AVI movie file.
44
+ % model2image & seg2image Change the extension and path of a given file.
45
+ % lab2rgb & rgb2lab Convert (X,Y,3) matrices from lab to rgb
46
+ % and from rgb to lab.
47
+ % xrgb2lab An old version of rgb2lab. May be required
48
+ % by some old code.
49
+ % randGmm Samples from a GMM.
50
+ % imnoiseSNR Add noise to given signal.
51
+ % Noise strengh is entered either
52
+ % in decibels or noise variance.
53
+ % medoid Compute medoid out of set of vectors.
54
+ % imRAG Compute adjacency graph for a K-class
55
+ % image.
56
+ %
57
+ % =========================================================================
58
+ % /matrixManipulation
59
+ % =========================================================================
60
+ %
61
+ % convertJxN Converts a (X,Y,J)-sized to a (J,X*Y)
62
+ % matrix. Useful if you want to pass data to
63
+ % some training algorithm.
64
+ % convolution2D Convolutes a (X,Y)-sized matrix with a 2d
65
+ % kernel.
66
+ % maxVote Use a maximum-vote 3x3 filter on input
67
+ % segmentation.
68
+ % smoothUsingVariantScale Smooth an image using gaussian kernels of
69
+ % spatially variant scale.
70
+ % translation Translate (move) a 2d matrix by a given
71
+ % offset.
72
+ %
73
+ % =========================================================================
74
+ % /mixtureLearning
75
+ % =========================================================================
76
+ %
77
+ % gaussianMixEmFit Learn a Gaussian MM.
78
+ % studentMixEmFit Learn a Student-t MM.
79
+ % gaussianMixGreedyEmFit Learn a Gaussian MM using Greedy EM.
80
+ % studentMixGreedyEmFit Learn a Student-t MM using Greedy EM.
81
+ % VARIATIONAL/ Variation methodology applications
82
+ % gaussianMixBayesian Learn a Gaussian MM with priors.
83
+ % studentMixBayesian Learn a Student-t MM with priors on all
84
+ % parameters except for the degrees of
85
+ % freedom.
86
+ % studentMixBayesianXP Learn a Student-t MM with priors on all
87
+ % parameters except for the degrees of
88
+ % freedom _and_ the weights.
89
+ % MARKOV/
90
+ % gaussianMixBayesianContinuousLp
91
+ % Learn a model with continuous line process.
92
+ % (CVPR08 proposal)
93
+ % gaussianMixBayesianLp Learn a model with discrete line process.
94
+ % (MICCAI08 proposal)
95
+ % gaussianMixDCASV Learn a model with class- and directional-
96
+ % adaptive priors (Nikou07 TIP paper)
97
+ %
98
+ % NOMBRE/
99
+ % gaussianMixNombre
100
+ % Learn a model which uses a spatial MRF
101
+ % and can find the number of classes
102
+ % automatically
103
+ % gaussianMixNombre2 Same as "gaussianMixNombre" - but without
104
+ % automatic number of classes selection
105
+ % (ie almost like "gaussianMixContinuousLp")
106
+ % gaussianMixNombre3 Same as "gaussianMixNombre" - but without
107
+ % an MRF incorporated
108
+ % (ie almost like "gaussianMixBayesian")
109
+ % =========================================================================
110
+ % /pdfDistances
111
+ % =========================================================================
112
+ %
113
+ % bhgmmDistance Bhatacharryya-based distance for GMMs.
114
+ % emdDistance Earth movers distance.
115
+ % kullbackDistance Symmetric kullback-liebler distance.
116
+ % l2Distance L2 distance for GMMs. [Sfikas04]
117
+ % mahalanobisDistance Quadratic distance for blobworld region
118
+ % descriptors.
119
+ %
120
+ % =========================================================================
121
+ % /segmentation
122
+ % =========================================================================
123
+ %
124
+ % buildSegmentation Builds a segmentation for given 2D image,
125
+ % using a variety of methods.
126
+ % BoundaryDetectionError
127
+ % GlobalConsistencyError
128
+ % probabilisticRandIndex
129
+ % RandIndex Fast version of 'probabilisticRandIndex'.
130
+ % VariationOfInformation
131
+ %
132
+ % =========================================================================
133
+ % /texture
134
+ % =========================================================================
135
+ %
136
+ % MRF_texture_features Compute MRF texture feature vectors,
137
+ % by default 8-variate.
138
+ % computeBlobworldFeatureVectors Compute Blobworld feature vectors,
139
+ % ie smooth Lab, Pol-Ani-Con
140
+ % and x-y. (8-variate).
141
+ %
142
+ % =========================================================================
143
+ % /mexRoutines
144
+ % =========================================================================
145
+ %
146
+ % BIDProjection Project input vector 'x' onto space
147
+ % sum(x) = 1 && x > 0.
148
+ % Currently uses method presented in
149
+ % Sfikas et al [MLSP workshop 09]
150
+ % Formerly the one in
151
+ % Blekas et al [TIP 05]
152
+ % xConjugateProjection Deprecated. A failed attempt for
153
+ % a better projection, for the same
154
+ % problem treated by BIDProjection.
155
+ %
156
+ %
0 commit comments