-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_preparation.py
35 lines (29 loc) · 1.17 KB
/
data_preparation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import os
from keras.preprocessing.image import ImageDataGenerator
def data_pre():
root_path=os.path.abspath('./')
train_generator=ImageDataGenerator(
rotation_range=10,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.1,
fill_mode='constant',
cval=0.0,
horizontal_flip=True,
vertical_flip=True,
rescale=1./255
)
test_generator=ImageDataGenerator(rescale=1./255)
data_train=train_generator.flow_from_directory(directory=os.path.join(root_path,'Mstar_dataset','train'),
target_size=[128,128],color_mode='grayscale',class_mode='categorical',
batch_size=32,shuffle=True
)
data_validation=test_generator.flow_from_directory(directory=os.path.join(root_path,'Mstar_dataset','validation'),
target_size=[128,128],color_mode='grayscale',class_mode='categorical',
batch_size=32,shuffle=True
)
data_test=test_generator.flow_from_directory(directory=os.path.join(root_path,'Mstar_dataset','test'),
target_size=[128,128],color_mode='grayscale',class_mode='categorical',
batch_size=32,shuffle=True
)
return data_train,data_validation,data_test