-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFlowOpenSSL.h
311 lines (240 loc) · 9.38 KB
/
FlowOpenSSL.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
#pragma once
#include <iostream>
#include <memory>
#include <openssl/bio.h>
#include <openssl/bn.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include <openssl/rsa.h>
#include <openssl/ssl.h>
#include <openssl/x509.h>
#include <string>
#include <vector>
namespace FlowOpenSSL {
struct KeyPair {
std::string publicKey;
std::string privateKey;
};
inline static std::vector<unsigned char>
sha1(const std::vector<unsigned char> &input) {
unsigned char digest[SHA_DIGEST_LENGTH];
std::vector<unsigned char> rtn;
SHA_CTX context;
if (!SHA1_Init(&context))
return rtn;
if (!SHA1_Update(&context, (unsigned char *)input.data(), input.size()))
return rtn;
if (!SHA1_Final(digest, &context))
return rtn;
rtn.assign(digest, digest + SHA_DIGEST_LENGTH);
return rtn;
}
inline static std::vector<unsigned char> sha1(const std::string &input) {
unsigned char digest[SHA_DIGEST_LENGTH];
std::vector<unsigned char> rtn;
SHA_CTX context;
if (!SHA1_Init(&context))
return rtn;
if (!SHA1_Update(&context, (unsigned char *)input.c_str(), input.size()))
return rtn;
if (!SHA1_Final(digest, &context))
return rtn;
rtn.assign(digest, digest + SHA_DIGEST_LENGTH);
return rtn;
}
inline static std::vector<unsigned char> sha256(const std::string &input) {
unsigned char digest[SHA256_DIGEST_LENGTH];
std::vector<unsigned char> rtn;
SHA256_CTX context;
if (!SHA256_Init(&context))
return rtn;
if (!SHA256_Update(&context, (unsigned char *)input.c_str(), input.size()))
return rtn;
if (!SHA256_Final(digest, &context))
return rtn;
rtn.assign(digest, digest + SHA256_DIGEST_LENGTH);
return rtn;
}
inline static std::vector<unsigned char>
sha256(const std::vector<unsigned char> &input) {
unsigned char digest[SHA256_DIGEST_LENGTH];
std::vector<unsigned char> rtn;
SHA256_CTX context;
if (!SHA256_Init(&context))
return rtn;
if (!SHA256_Update(&context, input.data(), input.size()))
return rtn;
if (!SHA256_Final(digest, &context))
return rtn;
rtn.assign(digest, digest + SHA256_DIGEST_LENGTH);
return rtn;
}
inline static std::string toString(BIO *bio) {
std::string rtn;
char buffer[2048];
size_t read;
BIO_read_ex(bio, buffer, sizeof(buffer), &read);
while (read > 0) {
rtn.insert(rtn.end(), buffer, buffer + read);
BIO_read_ex(bio, buffer, sizeof(buffer), &read);
}
return rtn;
}
inline static void printBio(BIO *bio) {
char buffer[1024];
while (BIO_read(bio, buffer, 1024) > 0) {
std::cout << buffer;
}
}
inline static KeyPair generateKeyPair(size_t keyLength = 4096) {
using BN_ptr = std::unique_ptr<BIGNUM, decltype(&::BN_free)>;
using RSA_ptr = std::unique_ptr<RSA, decltype(&::RSA_free)>;
using EVP_KEY_ptr = std::unique_ptr<EVP_PKEY, decltype(&::EVP_PKEY_free)>;
using BIO_FILE_ptr = std::unique_ptr<BIO, decltype(&::BIO_free)>;
RSA_ptr rsa(RSA_new(), ::RSA_free);
BN_ptr bn(BN_new(), ::BN_free);
BIO_FILE_ptr pem1(BIO_new_file("rsa-public-1.pem", "w"), ::BIO_free);
BIO_FILE_ptr pem2(BIO_new_file("rsa-public-2.pem", "w"), ::BIO_free);
BIO_FILE_ptr pem3(BIO_new_file("rsa-private-1.pem", "w"), ::BIO_free);
BIO_FILE_ptr pem4(BIO_new_file("rsa-private-2.pem", "w"), ::BIO_free);
BIO_FILE_ptr pem5(BIO_new_file("rsa-private-3.pem", "w"), ::BIO_free);
BIO_FILE_ptr der1(BIO_new_file("rsa-public.der", "w"), ::BIO_free);
BIO_FILE_ptr der2(BIO_new_file("rsa-private.der", "w"), ::BIO_free);
BIO_FILE_ptr strpri(BIO_new(BIO_s_mem()), ::BIO_free);
BIO_FILE_ptr strpub(BIO_new(BIO_s_mem()), ::BIO_free);
int rc = BN_set_word(bn.get(), RSA_F4);
rc = RSA_generate_key_ex(rsa.get(), keyLength, bn.get(), NULL);
if (rc != 1)
return {};
EVP_KEY_ptr pkey(EVP_PKEY_new(), ::EVP_PKEY_free);
rc = EVP_PKEY_set1_RSA(pkey.get(), rsa.get());
if (rc != 1)
return {};
rc = i2d_RSAPublicKey_bio(der1.get(), rsa.get());
if (rc != 1)
return {};
// Write public key in PKCS PEM
// rc = PEM_write_bio_RSAPublicKey(pem1.get(), rsa.get());
// Write public key in Traditional PEM
// rc = PEM_write_bio_PUBKEY(pem2.get(), pkey.get());
//////////
// Write private key in ASN.1/DER
// rc = i2d_RSAPrivateKey_bio(der2.get(), rsa.get());
// Write private key in PKCS PEM.
// rc = PEM_write_bio_PrivateKey(pem3.get(), pkey.get(), NULL, NULL, 0, NULL,
// NULL);
// Write private key in PKCS PEM
// rc = PEM_write_bio_PKCS8PrivateKey(pem4.get(), pkey.get(), NULL, NULL, 0,
// NULL, NULL);
// Write private key in Traditional PEM
// rc = PEM_write_bio_RSAPrivateKey(pem5.get(), rsa.get(), NULL, NULL, 0,
// NULL,
// NULL);
rc = PEM_write_bio_PrivateKey(strpri.get(), pkey.get(), NULL, NULL, 0, NULL,
NULL);
if (rc != 1)
return {};
rc = PEM_write_bio_PUBKEY(strpub.get(), pkey.get());
if (rc != 1)
return {};
// std::cout << "Public Key: " << std::endl;
// std::cout << toString(strpub.get()) << std::endl;
// std::cout << "Private Key: " << std::endl;
// std::cout << toString(strpri.get()) << std::endl;
// return {toString(strpri.get()), toString(strpub.get())};
return {toString(strpub.get()), toString(strpri.get())};
}
inline static std::string encodeMessage(const std::string &to_enc,
const std::string &public_key) {
using BN_ptr = std::unique_ptr<BIGNUM, decltype(&::BN_free)>;
// using RSA_ptr = std::unique_ptr<RSA, decltype(&::RSA_free)>;
using EVP_KEY_ptr = std::unique_ptr<EVP_PKEY, decltype(&::EVP_PKEY_free)>;
using EVP_PKEY_CTX_ptr =
std::unique_ptr<EVP_PKEY_CTX, decltype(&::EVP_PKEY_CTX_free)>;
using BIO_FILE_ptr = std::unique_ptr<BIO, decltype(&::BIO_free)>;
auto my_deleter = [](unsigned char *p) {
CRYPTO_free(p, OPENSSL_FILE, OPENSSL_LINE);
};
using OUT_ptr = std::unique_ptr<unsigned char, decltype(my_deleter)>;
BIO_FILE_ptr strpub(BIO_new(BIO_s_mem()), ::BIO_free);
int rc = BIO_write(strpub.get(), public_key.c_str(), public_key.size());
// if (rc != 1)
// return "";
// RSA_ptr rsa(PEM_read_bio_RSA_PUBKEY(strpub.get(), NULL, NULL, NULL),
// &::RSA_free);
auto rsa = PEM_read_bio_RSA_PUBKEY(strpub.get(), NULL, NULL, NULL);
EVP_KEY_ptr public_evp_key(EVP_PKEY_new(), ::EVP_PKEY_free);
EVP_PKEY_assign_RSA(public_evp_key.get(), rsa);
EVP_PKEY_CTX_ptr ctx(EVP_PKEY_CTX_new(public_evp_key.get(), NULL),
::EVP_PKEY_CTX_free);
rc = EVP_PKEY_encrypt_init(ctx.get());
if (rc != 1)
return "";
rc = EVP_PKEY_CTX_set_rsa_padding(ctx.get(), RSA_PKCS1_OAEP_PADDING);
if (rc != 1)
return "";
size_t out_len = 0;
rc = EVP_PKEY_encrypt(ctx.get(), NULL, &out_len,
reinterpret_cast<const unsigned char *>(to_enc.data()),
to_enc.size());
if (rc != 1)
return "";
// unsigned char* out = reinterpret_cast<unsigned char
// *>(OPENSSL_malloc(out_len));
OUT_ptr out(reinterpret_cast<unsigned char *>(OPENSSL_malloc(out_len)),
my_deleter);
rc = EVP_PKEY_encrypt(ctx.get(), out.get(), &out_len,
reinterpret_cast<const unsigned char *>(to_enc.c_str()),
to_enc.size());
if (rc != 1)
return "";
return std::string(reinterpret_cast<char *>(out.get()), out_len);
}
inline static std::string decodeMessage(const std::string &to_dec,
const std::string &private_key) {
using BN_ptr = std::unique_ptr<BIGNUM, decltype(&::BN_free)>;
// using RSA_ptr = std::unique_ptr<RSA, decltype(&::RSA_free)>;
using EVP_KEY_ptr = std::unique_ptr<EVP_PKEY, decltype(&::EVP_PKEY_free)>;
using EVP_PKEY_CTX_ptr =
std::unique_ptr<EVP_PKEY_CTX, decltype(&::EVP_PKEY_CTX_free)>;
using BIO_FILE_ptr = std::unique_ptr<BIO, decltype(&::BIO_free)>;
auto my_deleter = [](unsigned char *p) {
CRYPTO_free(p, OPENSSL_FILE, OPENSSL_LINE);
};
using OUT_ptr = std::unique_ptr<unsigned char, decltype(my_deleter)>;
BIO_FILE_ptr strpriv(BIO_new(BIO_s_mem()), ::BIO_free);
int rc = BIO_write(strpriv.get(), private_key.c_str(), private_key.size());
// if (rc != 1)
// return "";
// RSA_ptr rsa(PEM_read_bio_RSA_PUBKEY(strpriv.get(), NULL, NULL, NULL),
// &::RSA_free);
auto rsa = PEM_read_bio_RSAPrivateKey(strpriv.get(), NULL, NULL, NULL);
EVP_KEY_ptr public_evp_key(EVP_PKEY_new(), ::EVP_PKEY_free);
EVP_PKEY_assign_RSA(public_evp_key.get(), rsa);
EVP_PKEY_CTX_ptr ctx(EVP_PKEY_CTX_new(public_evp_key.get(), NULL),
::EVP_PKEY_CTX_free);
rc = EVP_PKEY_decrypt_init(ctx.get());
if (rc != 1)
return "";
rc = EVP_PKEY_CTX_set_rsa_padding(ctx.get(), RSA_PKCS1_OAEP_PADDING);
if (rc != 1)
return "";
size_t out_len = 0;
rc = EVP_PKEY_decrypt(ctx.get(), NULL, &out_len,
reinterpret_cast<const unsigned char *>(to_dec.data()),
to_dec.size());
if (rc != 1)
return "";
// unsigned char* out = reinterpret_cast<unsigned char
// *>(OPENSSL_malloc(out_len));
OUT_ptr out(reinterpret_cast<unsigned char *>(OPENSSL_malloc(out_len)),
my_deleter);
rc = EVP_PKEY_decrypt(ctx.get(), out.get(), &out_len,
reinterpret_cast<const unsigned char *>(to_dec.data()),
to_dec.size());
if (rc != 1)
return "";
return std::string(reinterpret_cast<char *>(out.get()), out_len);
}
}; // namespace FlowOpenSSL