forked from pratyush48/Activity_Reccognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassification.py
132 lines (110 loc) · 4.05 KB
/
classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import numpy as np
import pandas as pd
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
import matplotlib.pyplot as plt
import warnings
import os
warnings.filterwarnings("ignore")
Window_Length = 100
#Reading the data from csv
df = pd.read_csv("Acc_Gyro_F.csv")
test_input = []
test_output = []
#Solving time series problem using window method
i = 0
while(i <= df.shape[0] - Window_Length):
temp = df[i:i+Window_Length]
inp = temp.drop(temp[['Output']],axis = 1)
out = temp[['Output']]
test_input.append(inp)
test_output.append(out.iloc[0])
i = i + int(Window_Length/2)
#Extracting the nessecary features in a single window
mean = pd.DataFrame()
standard_deviation = pd.DataFrame()
mad = pd.DataFrame()
avgdiff = pd.DataFrame()
maximum = pd.DataFrame()
minimum = pd.DataFrame()
var = pd.DataFrame()
for windows in test_input:
df_mean = pd.DataFrame(windows.mean()).transpose()
df_std = pd.DataFrame(windows.std()).transpose()
df_max = pd.DataFrame(windows.max()).transpose()
df_med_abs = pd.DataFrame(windows.mad()).transpose()
df_avg_diff = pd.DataFrame(windows.diff().dropna().div(10).mean()).transpose()
df_min = pd.DataFrame(windows.min()).transpose()
df_var = pd.DataFrame(windows.var()).transpose()
mean = pd.concat([mean, df_mean])
standard_deviation = pd.concat([standard_deviation, df_std])
mad = pd.concat([mad, df_med_abs])
maximum = pd.concat([maximum, df_max])
minimum = pd.concat([minimum, df_min])
avgdiff = pd.concat([avgdiff, df_avg_diff])
var = pd.concat([var, df_var])
mean = mean.reset_index(drop=True)
standard_deviation = standard_deviation.reset_index(drop=True)
mad = mad.reset_index(drop=True)
avgdiff = avgdiff.reset_index(drop=True)
maximum = maximum.reset_index(drop=True)
minimum = minimum.reset_index(drop=True)
var = var.reset_index(drop=True)
var.columns = [x + "var" for x in var.columns]
maximum.columns = [x + "max" for x in maximum.columns]
avgdiff.columns = [x + "avgdiff" for x in avgdiff.columns]
mean.columns = [x + "mean" for x in mean.columns]
standard_deviation.columns = [x + "std" for x in standard_deviation.columns]
mad.columns = [x + "mad" for x in mad.columns]
minimum.columns = [x + "min" for x in minimum.columns]
feature_columns = mean.join([standard_deviation, maximum, minimum, var, mad])
#print(feature_columns)
feature_columns['Output'] = np.array(test_output)
#Spliting the data in 75:25
train, test = train_test_split(feature_columns, test_size=0.25, shuffle=True)
in_train = train.drop(train[['Output']],axis=1)
out_train = train[['Output']]
in_test = test.drop(test[['Output']],axis=1)
out_test = test[['Output']]
scaler = StandardScaler()
scaler.fit(in_train)
in_train = scaler.transform(in_train)
in_test = scaler.transform(in_test)
#Using KNN classifier
neigh = KNeighborsClassifier(n_neighbors=3)
neigh.fit(in_train, out_train)
#Using Logistic Regression
clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial').fit(in_train, out_train)
#Using SVM classifier
svc = SVC(gamma = 'auto')
svc.fit(in_train, out_train)
SVM = []
KNN = []
LR = []
for i in range(10):
SVM.append(svc.score(in_test, out_test))
KNN.append(clf.score(in_test, out_test))
LR.append(neigh.score(in_test, out_test))
SVM_avg = sum(SVM)/len(SVM)
KNN_avg = sum(KNN)/len(KNN)
LR_avg = sum(LR)/len(LR)
print('SVM', SVM_avg)
print('Logistic Regression', LR_avg)
print('K-Nearest Neighbour', KNN_avg)
out_pred = neigh.predict(in_test)
#Going for Confusion Matrix
conf_matrix = confusion_matrix(out_test, out_pred)
print(conf_matrix)
fig = plt.figure()
axs = fig.add_subplot(111)
caxs = axs.matshow(conf_matrix, interpolation='nearest', cmap=plt.cm.Blues)
fig.colorbar(caxs)
Activities = ["Climbing", "Walking", "Jumping", "Running"]
axs.set_xticklabels([""] + Activities)
axs.set_yticklabels([""] + Activities)
plt.show()