-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathtranslate.py
225 lines (195 loc) · 12 KB
/
translate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import torch
from datasets import load_dataset
from transformers import BitsAndBytesConfig
import json
import re
import gc
from tqdm import tqdm
import argparse
from translators.m2m import M2MTranslator
from translators.madlad import MADLADTranslator
from translators.mbart import mBARTTranslator
from translators.nllb import NLLBTranslator
from translators.opus import OPUSTranslator
from translators.seamless_m4t_v2 import Seamless_M4T_V2
from translators.towerinstruct import TowerInstructTranslator
from translators.gemini_pro import GeminiProTranslator
# Find the max checkpoint number to continue from
def find_largest_checkpoint(checkpoint_location):
pattern = r'upto_(\d+).json'
files = os.listdir(checkpoint_location)
numbers = [int(re.search(pattern, file).group(1)) for file in files if re.match(pattern, file)]
if numbers:
return max(numbers)
else:
return 0
# Group all records in a dataset by language so we can use a single model in a batched fashion
def group_records_by_language(dataset, lang_field):
grouped_records = {}
for record in dataset:
lang = record[lang_field]
if lang not in grouped_records:
grouped_records[lang] = []
grouped_records[lang].append(record)
return grouped_records
def main():
parser = argparse.ArgumentParser(
description="Translate an instruct/RLHF dataset to a given target language using a variety of translation models")
subparsers = parser.add_subparsers(dest='model', help='The model/architecture used for translation.')
parser.add_argument('target_lang', type=str,
help="The target language. Make sure you use language codes defined by the translation model you are using.")
parser.add_argument('checkpoint_location', type=str,
help="The folder the script will write (JSONized) checkpoint files to. Folder will be created if it doesn't exist.")
parser.add_argument('--quant8', action='store_true',
help='Optional flag to load the translation model in 8 bits. Decreases memory usage, increases running time')
parser.add_argument('--quant4', action='store_true',
help='Optional flag to load the translation model in 4 bits. Decreases memory usage, increases running time')
parser.add_argument('--base_dataset', type=str, default="OpenAssistant/oasst1",
help="The base dataset to translate, defaults to OpenAssistant/oasst1")
parser.add_argument('--base_dataset_text_field', type=str, default="text",
help="The base dataset's column name containing the actual text to translate. Defaults to text")
parser.add_argument('--base_dataset_lang_field', type=str, default="lang",
help="The base dataset's column name containing the language the source text was written in. Defaults to lang")
parser.add_argument('--checkpoint_n', type=int, default=400,
help="An integer representing how often a checkpoint file will be written out. To start off, 400 is a reasonable number.")
parser.add_argument('--batch_size', type=int, default=10,
help="The batch size for a single translation model. Adjust based on your GPU capacity. Default is 10.")
parser.add_argument('--max_length', type=int, default=None,
help='How much tokens to generate at most. More tokens might be more accurate for lengthy input but creates a risk of running out of memory. Default is unlimited.')
parser.add_argument('--cpu', action='store_true',
help="Forces usage of CPU. By default GPU is taken if available.")
parser.add_argument('--source_lang', type=str, default=None,
help="Source language to select from OASST based on lang property of dataset")
parser.add_argument('--start_index', type=int, default=None,
help="Set start index for processing in dataset by range")
parser.add_argument('--end_index', type=int, default=None,
help="Set end index for processing in dataset by range")
parser_opus = subparsers.add_parser('opus', help='Translate the dataset using HelsinkiNLP OPUS models.')
parser_mbart = subparsers.add_parser('mbart', help='Translate the dataset using mBART.')
parser_madlad = subparsers.add_parser('madlad', help='Translate the dataset using Google\'s MADLAD models.')
parser_madlad.add_argument('--model_size', type=str, default="3b", choices=['3b', '7b', '7b-bt', '10b'],
help='The size of the MADLAD model to use. 7b-bt is the backtrained version (best to avoid unless you know what you are doing).')
parser_m2m = subparsers.add_parser('m2m', help='Translate the dataset using Facebook\'s M2M models.')
parser_m2m.add_argument('--model_size', type=str, default="418M", choices=['418M', '1.2B'],
help='The size of the M2M model to use. Default is 418M')
parser_nllb = subparsers.add_parser('nllb', help='Translate the dataset using Facebook\'s NLLB models.')
parser_nllb.add_argument('--model_size', type=str, default="distilled-600M",
choices=['distilled-600M', '1.3B', 'distilled-1.3B', '3.3B'],
help='The size of the NLLB model to use. Default is distilled-600M')
parser_seamlessv2 = subparsers.add_parser('seamless_m4t_v2',
help='Translate the dataset using Facebook\'s SeamlessM4T-v2 multimodal models.')
parser_towerinstruct = subparsers.add_parser('towerinstruct', help='Translate the dataset using Unbabel\'s Tower Instruct. Make sure your target language is in the 10 languages supported by the model.')
parser_gemini_pro = subparsers.add_parser('gemini_pro', help='Gemini Pro translation model')
parser_gemini_pro.add_argument('--auth_token', type=str, default=None,
help='Gemini Pro retrieved here https://makersuite.google.com/app/apikey')
# Default arguments shared across models
args = parser.parse_args()
model = args.model
target_lang = args.target_lang
checkpoint_location = args.checkpoint_location
quant4 = args.quant4
quant8 = args.quant8
base_dataset = args.base_dataset
base_dataset_text_field = args.base_dataset_text_field
base_dataset_lang_field = args.base_dataset_lang_field
checkpoint_n = args.checkpoint_n
batch_size = args.batch_size
force_cpu = args.cpu
selected_source_language = args.source_lang
start_index = args.start_index
end_index = args.end_index
device = torch.device("cuda:0" if torch.cuda.is_available() and not (force_cpu) else "cpu")
if checkpoint_n % batch_size != 0:
raise Exception("Checkpoint N must be a multiple of batch size!")
# Load the base dataset that we want to translate
dataset = load_dataset(base_dataset)
# Set up quantization configs if required
quant4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
print(f"[---- LLaMa2Lang ----] Starting translation of {base_dataset} using {model} on device {device}")
# Load the correct model
if model == 'madlad':
translator = MADLADTranslator(device, quant4, quant4_config, quant8, args.max_length, args.model_size)
elif model == 'm2m':
translator = M2MTranslator(device, quant4, quant4_config, quant8, args.max_length, args.model_size)
elif model == 'mbart':
translator = mBARTTranslator(device, quant4, quant4_config, quant8, args.max_length)
elif model == 'nllb':
translator = NLLBTranslator(device, quant4, quant4_config, quant8, args.max_length, args.model_size)
elif model == 'seamless_m4t_v2':
translator = Seamless_M4T_V2(device, quant4, quant4_config, quant8, args.max_length)
elif model == 'towerinstruct':
translator = TowerInstructTranslator(device, quant4, quant4_config, quant8, args.max_length)
elif model == 'gemini_pro':
translator = GeminiProTranslator(args.auth_token, args.max_length)
else:
translator = OPUSTranslator(device, quant4, quant4_config, quant8, args.max_length)
# Loop through the actual data and translate
with tqdm(total=sum(len(split) for split in dataset.values())) as pbar:
for fold in dataset:
records_by_lang = group_records_by_language(dataset[fold], base_dataset_lang_field)
if selected_source_language is not None:
records = records_by_lang[selected_source_language]
translate_records(base_dataset_lang_field, base_dataset_text_field, batch_size, checkpoint_location,
checkpoint_n, device, fold, pbar, records, selected_source_language, target_lang, translator,
last_checkpoint=start_index, end_of_range=end_index)
else:
for source_lang, records in records_by_lang.items():
translate_records(base_dataset_lang_field, base_dataset_text_field, batch_size, checkpoint_location,
checkpoint_n, device, fold, pbar, records, source_lang, target_lang, translator,
last_checkpoint=start_index, end_of_range=end_index)
# One source language down, release the memory
gc.collect()
if str(device).startswith('cuda'):
torch.cuda.empty_cache()
def translate_records(base_dataset_lang_field, base_dataset_text_field, batch_size, checkpoint_location, checkpoint_n,
device, fold, pbar, records, source_lang, target_lang, translator, last_checkpoint = None,
end_of_range = None):
lang_checkpoint_location = os.path.join(checkpoint_location, fold, f'from_{source_lang}')
os.makedirs(lang_checkpoint_location, exist_ok=True)
last_checkpoint_n = last_checkpoint if last_checkpoint is not None else find_largest_checkpoint(lang_checkpoint_location)
translated_texts = []
records_length = len(records) if end_of_range is None else end_of_range
print(
f'[---- LLaMa2Lang ----] Got {len(records)} records for source language {source_lang}, skipping {last_checkpoint_n}, will process till {records_length}')
pbar.total = records_length
pbar.update(last_checkpoint_n)
last_cnt = last_checkpoint_n
for cnt in range(last_checkpoint_n, records_length, batch_size):
# Translate a full batch
batch = records[cnt:cnt + batch_size]
texts_to_translate = [record[base_dataset_text_field] for record in batch]
# Offload translation to class implementation
translated_batch = translator.translate(texts_to_translate, source_lang, target_lang)
if translated_batch is not None:
# Combine original record with translated text
for record, translation in zip(batch, translated_batch):
record[base_dataset_text_field] = translation
record[base_dataset_lang_field] = target_lang
translated_texts.append(record)
pbar.update(batch_size)
# Write out checkpoint file
if (cnt + batch_size) % checkpoint_n == 0 and cnt != 0:
print(
f"[---- LLaMa2Lang ----] Writing out checkpoint #{str(cnt + batch_size)} for source language {source_lang}")
with open(os.path.join(lang_checkpoint_location, f'upto_{str(cnt + batch_size)}.json'), 'w',
encoding='utf-8') as f:
json.dump(translated_texts, f)
translated_texts = []
# Free some memory
gc.collect()
if str(device).startswith('cuda'):
torch.cuda.empty_cache()
last_cnt = cnt
# Write checkpoint
batch = records[last_cnt:]
checkpoint_file = os.path.join(lang_checkpoint_location, f'upto_{last_cnt}.json')
with open(checkpoint_file, 'w', encoding='utf-8') as f:
json.dump(batch, f)
if __name__ == "__main__":
main()