-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathcombine_checkpoints.py
44 lines (37 loc) · 1.85 KB
/
combine_checkpoints.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import json
import os
from datasets import Dataset, DatasetDict
import pandas as pd
import sys
import argparse
def main():
parser = argparse.ArgumentParser(description="Combine checkpoint files from translation.")
parser.add_argument('input_folder', type=str,
help='The checkpoint folder used in translation, with the target language appended. Example: "./checkpoints_nl".')
parser.add_argument('output_location', type=str,
help='Where to write the Huggingface Dataset. Can be a disk location or a Huggingface Dataset repository.')
args = parser.parse_args()
input_folder = args.input_folder
output_location = args.output_location
dataset = {}
# Get the subdirectories which will become the keys of the Dataset
folds = [name for name in os.listdir(input_folder) if os.path.isdir(os.path.join(input_folder, name))]
for fold in folds:
all_data = []
for lang_folder in os.listdir(os.path.join(input_folder, fold)):
for filename in os.listdir(os.path.join(input_folder, fold, lang_folder)):
if filename.endswith('.json'):
file_path = os.path.join(input_folder, fold, lang_folder, filename)
with open(file_path, 'r', encoding='utf-8') as file:
data = json.load(file)
all_data.extend(data)
dataset[fold] = Dataset.from_pandas(pd.DataFrame(data=all_data))
dataset = DatasetDict(dataset)
# Check if output location is a valid directory
if os.path.isdir(output_location):
dataset.save_to_disk(output_location)
else:
# Try to push to hub, requires HF_TOKEN environment variable to be set, see https://huggingface.co/docs/huggingface_hub/package_reference/environment_variables#hftoken
dataset.push_to_hub(output_location)
if __name__ == "__main__":
main()