forked from sihyeong671/DACON-CV02
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain-vit.py
177 lines (144 loc) · 7.54 KB
/
train-vit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import argparse
import os
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
import datetime as dt
from tqdm import tqdm
import albumentations as A
from albumentations.pytorch.transforms import ToTensorV2
from Modules import *
import wandb
def train_and_save(args: TrainArgs):
seed_everything(args.seed)
train_df_path, train_df_label = get_data(args)
train_transform = A.Compose([
A.VerticalFlip(),
A.HorizontalFlip(),
A.Resize(args.img_size,args.img_size),
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), max_pixel_value=255.0, always_apply=False, p=1.0),
ToTensorV2()
])
train_dataset = CustomDatasetV2(train_df_path, train_df_label, train_transform)
train_loader = DataLoader(train_dataset, batch_size = args.batch_size, shuffle=True, num_workers=2)
model = eval(args.model_generator).to(args.device)
criterion = nn.CrossEntropyLoss().to(args.device)
# optimizer = optim.Adam(params = model.parameters(), lr = args.lr)
optimizer = optim.AdamW(params = model.parameters(), lr = args.lr, weight_decay=0.05)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.scheduler_step, gamma=args.step_decay)
best_score = 0
NUM_ACCUM = 2
for epoch in range(1, args.epochs+1):
model.train()
train_loss = []
train_f1 = []
train_acc = []
for idx, data in enumerate(tqdm(train_loader)):
img = data['image'].float().to(args.device)
label = data['label'].to(args.device)
rgb_mean = data['rgb_mean'].float().to(args.device)
size = data['size'].float().to(args.device)
# cutmix
# r = np.random.rand(1)
# if r < 0:
# lam = np.random.beta(args.beta, args.beta)
# rand_index = torch.randperm(img.size()[0]).to(args.device)
# target_a = label
# target_b = label[rand_index]
# size_a = size
# size_b = size[rand_index]
# rgb_mean_a = rgb_mean
# rgb_mean_b = rgb_mean[rand_index]
# bbx1, bby1, bbx2, bby2 = rand_bbox(img.size(), lam)
# img[:, :, bbx1:bbx2, bby1:bby2] = img[rand_index, :, bbx1:bbx2, bby1:bby2]
# # adjust lambda to exactly match pixel ratio
# lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (img.size()[-1] * img.size()[-2]))
# # compute output
# rgb_mean = rgb_mean_a * lam + rgb_mean_b * (1. - lam)
# out_a = model(img, size_a, rgb_mean_a)
# out_b = model(img, size_b, rgb_mean_b)
# train_f1_item, train_acc_item = get_acc_and_f1(out_a, out_b, target_a, target_b, lam)
# train_f1.append(train_f1_item)
# train_acc.append(train_acc_item)
# loss = criterion(out_a, target_a) * lam + criterion(out_b, target_b) * (1. - lam)
# else:
# outs = model(img, size, rgb_mean)
# model_preds = outs.argmax(1).detach().cpu().numpy().tolist()
# label_lst = label.detach().cpu().numpy().tolist()
# train_f1_item = competition_metric(label_lst, model_preds)
# train_f1.append(train_f1_item)
# loss = criterion(outs, label)
r = np.random.rand(1)
if r < 0.5:
lam = np.random.beta(args.beta, args.beta)
rand_index = torch.randperm(img.size()[0]).to(args.device)
target_a = label
target_b = label[rand_index]
bbx1, bby1, bbx2, bby2 = rand_bbox(img.size(), lam)
img[:, :, bbx1:bbx2, bby1:bby2] = img[rand_index, :, bbx1:bbx2, bby1:bby2]
# adjust lambda to exactly match pixel ratio
lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (img.size()[-1] * img.size()[-2]))
# compute output
outs = model(img, size, rgb_mean)
model_preds = outs.argmax(1).detach().cpu().numpy()
label_lst = label.detach().cpu().numpy()
train_f1_item = competition_metric(label_lst.tolist(), model_preds.tolist())
train_f1.append(train_f1_item)
train_acc_item = ((label_lst==model_preds).sum().item() / outs.size(0)) * lam
train_acc.append(train_acc_item)
loss = criterion(outs, target_a) * lam + criterion(outs, target_b) * (1. - lam)
loss.backward()
else:
outs = model(img, size, rgb_mean)
model_preds = outs.argmax(1).detach().cpu().numpy()
label_lst = label.detach().cpu().numpy()
train_f1_item = competition_metric(label_lst.tolist(), model_preds.tolist())
train_f1.append(train_f1_item)
train_acc_item = ((label_lst==model_preds).sum().item() / outs.size(0))
train_acc.append(train_acc_item)
loss = criterion(outs, label)
loss.backward()
# if idx % NUM_ACCUM == 0:
# optimizer.step()
# optimizer.zero_grad()
# train_loss.append(loss.item())
optimizer.step()
optimizer.zero_grad()
train_loss.append(loss.item())
tr_loss = np.mean(train_loss)
train_f1_score = np.mean(train_f1)
train_acc_score = np.mean(train_acc)
print(f'Epoch [{epoch}], Train Loss : [{tr_loss:.5f}] Train Acc : [{train_acc_score:.5f}] Train F1 Score : [{train_f1_score:.5f}]')
wandb.log({"Train Loss": tr_loss, "Train Acc":train_acc_score, "Train F1 Score":train_f1_score})
if scheduler is not None:
scheduler.step()
if best_score < train_f1_score:
best_score = train_f1_score
args.save_weight_name = f'{args.epochs}_best_{model.__class__.__name__}'
save_model(model, optimizer, args, os.path.join(args.model_weight_path, args.save_weight_name))
if __name__ == '__main__':
now = dt.datetime.now().strftime('%Y-%m-%d %H.%M.%S')
print('The training started at ', now)
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=653) #
parser.add_argument('--start_time', type=str, default=now)
parser.add_argument('--epochs', type=int, default=45)
parser.add_argument('--scheduler_step', default=30)
parser.add_argument('--step_decay', default=0.1)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--img_size', type=int, default=384)
parser.add_argument('--beta', default=1)
parser.add_argument('--model_generator', default="ViT_Base(50)")
parser.add_argument('--wandb_enable', default=True)
args = TrainArgs(parser.parse_args())
args_dict = convert_args_to_dict(args)
print('***** echo args *****')
for k in args_dict : print(' - ', k, ':', args_dict[k])
print('*********************')
if(args.wandb_enable) : init_wandb(args)
train_and_save(args)
# python train.py --model_generator="MaxViT_Base(50)";python train.py --model_generator="MaxViT_S(50)";python train.py --model_generator="MaxViT_C(50)";python train.py --model_generator="MaxViT_SC(50)"