-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAPIs.py
42 lines (31 loc) · 1.46 KB
/
APIs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from src.preparation.data_cleaner import final_dataset_generator
from src.processing.feature_extractor import generate_idf_file
from src.processing.classifier_learner import get_trained_rel_model
from src.processing.answer_generator import get_answer_generator
def generate_final_dataset(rel_question_source, append=False):
"""
to generate the final dataset which is usable for models to train
@param rel_question_source: a file contains the pairs of relations and question templates
@param append: append new data to the last ones. if it's false, last dataset will be erased!
"""
final_dataset_generator(rel_question_source, append)
def train():
"""
train the classification model
"""
# if SVM model with tf-idf or weighted word2vec embedding styles is going to train,
# calling `generate_idf_file` before training would help this process
# it's not usable now since we are using the CNN model
# generate_idf_file()
get_trained_rel_model(force_train_models=True)
def run(multiple_relations=False):
"""
@param multiple_relations: if it's true, all of the relations with high probabilities is checked instead of just the best one
"""
answer_generator = get_answer_generator()
while True:
input_sentence = input('Enter a sentence:')
if input_sentence == 'q':
exit()
info = answer_generator(input_sentence, multiple_relations=multiple_relations)
print(info, '\n')