Given a prime P, 2 31, an integer B, 2
BL == N (mod P)
输入描述
Read several lines of input, each containing P,B,N separated by a space.
输出描述
For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".
输入例子
5 2 1
5 2 2
5 2 3
5 2 4
5 3 1
5 3 2
5 3 3
5 3 4
5 4 1
5 4 2
5 4 3
5 4 4
12345701 2 1111111
1111111121 65537 1111111111
输出例子
0
1
3
2
0
3
1
2
0
no solution
no solution
1
9584351
462803587
Hint
The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states
B(P-1) == 1 (mod P)
for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m
B(-m) == B(P-1-m) (mod P) .
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<time.h>
#include<string>
#define cl(a,b) memset(a,b,sizeof(a))
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define REP(i,n) for(int i=0;i<n;++i)
#define REP1(i,a,b) for(int i=a;i<=b;++i)
#define REP2(i,a,b) for(int i=a;i>=b;--i)
#define MP make_pair
#define LL long long
#define ULL unsigned long long
#define X first
#define Y second
#define MAXN 100050
using namespace std;
int p,b,n;
struct node
{
int a,id;
}q[MAXN];
bool cmp(node a,node b)
{
return a.a<b.a||(a.a==b.a&&a.id<b.id);
}
int qmod(int a,int b,int c)
{
int res=1;
while(b)
{
if(b&1)
res=((LL)res*a)%c;
a=((LL)a*a)%c;
b>>=1;
}
return res;
}
int main()
{
while(scanf("%d%d%d",&p,&b,&n)!=EOF){
int m=sqrt(p*1.0);
while(m*m<p)m++;
int res=1;
int tail=0;
int a=qmod(b,m,p);
for(int i=0;i<=m;++i)
{
q[tail].id=i;
q[tail++].a=res;
res=((LL)res*b)%p;
}
sort(q,q+tail,cmp);
int h=0;
for(int i=0;i<tail;++i)
{
if(i==0||q[i].a!=q[i-1].a)
{
q[h++]=q[i];
}
}
int flag=0,ans;
res=n;
int ra=qmod(a,p-2,p);
for(int i=0;i<=m;++i)
{
int l=0,r=h-1;
while(r-l>1)
{
int mid=(l+r)>>1;
if(q[mid].a>res)r=mid;
else l=mid;
}
int pos=-1;
if(q[l].a==res)pos=l;
if(q[r].a==res)pos=r;
if(pos!=-1){
ans=i*m+q[pos].id;
flag=1;
break;
}
res=((LL)res*ra)%p;
}
if(flag==0)puts("no solution");
else
printf("%d\n",ans);
}
}